BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 29397786)

  • 1. Robotic Patterning a Superhydrophobic Surface for Collective Cell Migration Screening.
    Pang Y; Yang J; Hui Z; Grottkau BE
    Tissue Eng Part C Methods; 2018 Apr; 24(4):205-213. PubMed ID: 29397786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D-printed insert-array and 3D-coculture-array for high-throughput screening of cell migration and application to study molecular and cellular influences.
    Grottkau BE; Hui Z; Ye C; Pang Y
    Biomed Mater; 2020 Aug; 15(5):055028. PubMed ID: 32485682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput superhydrophobic microwell arrays for investigating multifactorial stem cell niches.
    Zhang P; Zhang J; Bian S; Chen Z; Hu Y; Hu R; Li J; Cheng Y; Zhang X; Zhou Y; Chen X; Liu P
    Lab Chip; 2016 Aug; 16(16):2996-3006. PubMed ID: 27137909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guided transport of water droplets on superhydrophobic-hydrophilic patterned Si nanowires.
    Seo J; Lee S; Lee J; Lee T
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4722-9. PubMed ID: 22091585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inkjet-Printing Patterned Chip on Sticky Superhydrophobic Surface for High-Efficiency Single-Cell Array Trapping and Real-Time Observation of Cellular Apoptosis.
    Sun Y; Song W; Sun X; Zhang S
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31054-31060. PubMed ID: 30148358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalable fabrication of superhydrophobic hierarchical colloidal arrays.
    Yang H; Jiang P
    J Colloid Interface Sci; 2010 Dec; 352(2):558-65. PubMed ID: 20850756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated, controlled deposition of nanoparticles on polyelectrolyte-coated silicon from chemomechanically patterned droplet arrays.
    Owen JI; Niederhauser TL; Wacaser BA; Christenson MP; Davis RC; Linford MR
    Lab Chip; 2004 Dec; 4(6):553-7. PubMed ID: 15570364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spray-coating of superhydrophobic aluminum alloys with enhanced mechanical robustness.
    Zhang Y; Ge D; Yang S
    J Colloid Interface Sci; 2014 Jun; 423():101-7. PubMed ID: 24703674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterning of controllable surface wettability for printing techniques.
    Tian D; Song Y; Jiang L
    Chem Soc Rev; 2013 Jun; 42(12):5184-209. PubMed ID: 23511610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combinatorial cell-3D biomaterials cytocompatibility screening for tissue engineering using bioinspired superhydrophobic substrates.
    Salgado CL; Oliveira MB; Mano JF
    Integr Biol (Camb); 2012 Mar; 4(3):318-27. PubMed ID: 22301669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining 2D angiogenesis and 3D osteosarcoma microtissues to improve vascularization.
    Chaddad H; Kuchler-Bopp S; Fuhrmann G; Gegout H; Ubeaud-Sequier G; Schwinté P; Bornert F; Benkirane-Jessel N; Idoux-Gillet Y
    Exp Cell Res; 2017 Nov; 360(2):138-145. PubMed ID: 28867479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superhydrophobic Surfaces on Phase-separated Nanostructures of Polystyrene/Polymethyl Methacrylate Films Fabricated by the Double-spray Technique.
    Watanabe S; Fujisaki M; Murai K; Matsumoto M
    J Oleo Sci; 2018 Sep; 67(9):1101-1105. PubMed ID: 30111680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of sticky and slippery superhydrophobic surfaces via spin-coating silica nanoparticles onto flat/patterned substrates.
    Cho KH; Chen LJ
    Nanotechnology; 2011 Nov; 22(44):445706. PubMed ID: 21979566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robotic nanolitre protein crystallisation at the MRC Laboratory of Molecular Biology.
    Stock D; Perisic O; Löwe J
    Prog Biophys Mol Biol; 2005 Jul; 88(3):311-27. PubMed ID: 15652247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell reprogramming in a predictable manner on the superhydrophobic microwell array chip.
    Qu J; Wang X; Zhang Y; Hu R; Hao Y; Zhao X; Dong C; Yang C; Zhang W; Sui J; Huang Y; Liu P; Yu J; Chen X; Fan Y
    Biomaterials; 2023 Oct; 301():122215. PubMed ID: 37406601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combinatorial materials research applied to the development of new surface coatings VI: An automated spinning water jet apparatus for the high-throughput characterization of fouling-release marine coatings.
    Stafslien SJ; Bahr JA; Daniels JW; Wal LV; Nevins J; Smith J; Schiele K; Chisholm B
    Rev Sci Instrum; 2007 Jul; 78(7):072204. PubMed ID: 17672735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatially defined hydrophobic coating of a microwell-patterned hydrophilic polymer substrate for targeted adhesion with high-resolution soft lithography.
    Lee NY
    Colloids Surf B Biointerfaces; 2013 Nov; 111():313-20. PubMed ID: 23838198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication, surface properties, and origin of superoleophobicity for a model textured surface.
    Zhao H; Law KY; Sambhy V
    Langmuir; 2011 May; 27(10):5927-35. PubMed ID: 21486088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired patterning with extreme wettability contrast on TiO2 nanotube array surface: a versatile platform for biomedical applications.
    Lai Y; Lin L; Pan F; Huang J; Song R; Huang Y; Lin C; Fuchs H; Chi L
    Small; 2013 Sep; 9(17):2945-53. PubMed ID: 23420792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic Collective Cell Migration Assay for Study of Endothelial Cell Proliferation and Migration under Combinations of Oxygen Gradients, Tensions, and Drug Treatments.
    Shih HC; Lee TA; Wu HM; Ko PL; Liao WH; Tung YC
    Sci Rep; 2019 Jun; 9(1):8234. PubMed ID: 31160651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.