BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 29397919)

  • 21. Electrogastrography: measurement, analysis and prospective applications.
    Chen J; McCallum RW
    Med Biol Eng Comput; 1991 Jul; 29(4):339-50. PubMed ID: 1787748
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simple gastric motility assessment method with a single-channel electrogastrogram.
    Popović NB; Miljković N; Popović MB
    Biomed Tech (Berl); 2019 Apr; 64(2):177-185. PubMed ID: 29708873
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantifying mode mixing and leakage in multivariate empirical mode decomposition and application in motor imagery-based brain-computer interface system.
    Zheng Y; Xu G
    Med Biol Eng Comput; 2019 Jun; 57(6):1297-1311. PubMed ID: 30737625
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The simultaneous recording and analysis both EGG and HRV signals.
    Pietraszek S; Komorowski D
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():396-9. PubMed ID: 19963965
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrogastrography in adults and children: the strength, pitfalls, and clinical significance of the cutaneous recording of the gastric electrical activity.
    Riezzo G; Russo F; Indrio F
    Biomed Res Int; 2013; 2013():282757. PubMed ID: 23762836
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibitory effects of cholecystokinin on postprandial gastric myoelectrical activity.
    Chen JD; Lin ZY; Parolisi S; McCallum RW
    Dig Dis Sci; 1995 Dec; 40(12):2614-22. PubMed ID: 8536521
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Early Fault Detection Method for Rotating Machinery Based on Harmonic-Assisted Multivariate Empirical Mode Decomposition and Transfer Entropy.
    Wu Z; Zhang Q; Wang L; Cheng L; Zhou J
    Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266597
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pitfalls in the analysis of electrogastrographic recordings.
    Verhagen MA; Van Schelven LJ; Samsom M; Smout AJ
    Gastroenterology; 1999 Aug; 117(2):453-60. PubMed ID: 10419928
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nonlinear adaptive noise compensation in electrogastrograms recorded from healthy dogs.
    Mintchev MP; Girard A; Bowes KL
    IEEE Trans Biomed Eng; 2000 Feb; 47(2):239-48. PubMed ID: 10721631
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of gastric myoelectrical rhythms in patients with systemic sclerosis using multichannel surface electrogastrography.
    McNearney T; Lin X; Shrestha J; Lisse J; Chen JD
    Dig Dis Sci; 2002 Apr; 47(4):690-8. PubMed ID: 11991594
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Real-time display of the stomach slow wave and its parameters in a newly designed electrogastrographic system.
    Chang FY; Lu CL; Chen CY; Lee SD; Young ST; Wu HC; Kuo TS
    J Gastroenterol; 2001 Jan; 36(1):10-7. PubMed ID: 11211205
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TRANSCUTANEOUS MULTICHANNEL ELECTROGASTROGRAPHY: NORMAL PARAMETERS IN A BRAZILIAN POPULATION.
    Carvalho NS; Baima DC; Barbuti RC; Carvalho PJPC; Rezende Filho J; Navarro-Rodriguez T
    Arq Gastroenterol; 2020; 57(4):428-433. PubMed ID: 33331476
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrogastrography: basic knowledge, recording, processing and its clinical applications.
    Chang FY
    J Gastroenterol Hepatol; 2005 Apr; 20(4):502-16. PubMed ID: 15836697
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The extraction of the new components from electrogastrogram (EGG), using both adaptive filtering and electrocardiographic (ECG) derived respiration signal.
    Komorowski D; Pietraszek S; Tkacz E; Provaznik I
    Biomed Eng Online; 2015 Jun; 14():60. PubMed ID: 26099312
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Non-invasive electrogastrography. Part 1: Correlation between the gastric electrical activity in dogs with implanted and cutaneous electrodes.
    Atanassova E; Daskalov I; Dotsinsky I; Christov I; Atanassova A
    Arch Physiol Biochem; 1995 Aug; 103(4):431-5. PubMed ID: 8548478
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Signal reconstruction of the slow wave and spike potential from electrogastrogram.
    Qin S; Ding W; Miao L; Xi N; Li H; Yang C
    Biomed Mater Eng; 2015; 26 Suppl 1():S1515-21. PubMed ID: 26405915
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Validation of noninvasive body-surface gastric mapping for detecting gastric slow-wave spatiotemporal features by simultaneous serosal mapping in porcine.
    Calder S; Cheng LK; Andrews CN; Paskaranandavadivel N; Waite S; Alighaleh S; Erickson JC; Gharibans A; O'Grady G; Du P
    Am J Physiol Gastrointest Liver Physiol; 2022 Oct; 323(4):G295-G305. PubMed ID: 35916432
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Continuous wavelet analysis as an aid in the representation and interpretation of electrogastrographic signals.
    Qiao W; Sun HH; Chey WY; Lee KY
    Ann Biomed Eng; 1998; 26(6):1072-81. PubMed ID: 9846945
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrogastrography: a noninvasive technique to evaluate gastric electrical activity.
    Sanmiguel CP; Mintchev MP; Bowes KL
    Can J Gastroenterol; 1998 Sep; 12(6):423-30. PubMed ID: 9784898
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multichannel electrogastrography (EGG) in symptomatic patients: a single center study.
    Simonian HP; Panganamamula K; Chen JZ; Fisher RS; Parkman HP
    Am J Gastroenterol; 2004 Mar; 99(3):478-85. PubMed ID: 15056089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.