These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 29397992)
61. Differential Responses of Growth and Photochemical Performance of Marine Diatoms to Ocean Warming and High Light Irradiance. Wu Y; Zhang M; Li Z; Xu J; Beardall J Photochem Photobiol; 2020 Sep; 96(5):1074-1082. PubMed ID: 32222969 [TBL] [Abstract][Full Text] [Related]
62. The combined effects of ocean warming and acidification on shallow-water meiofaunal assemblages. Lee MR; Torres R; Manríquez PH Mar Environ Res; 2017 Oct; 131():1-9. PubMed ID: 28919151 [TBL] [Abstract][Full Text] [Related]
63. Ocean acidification conditions increase resilience of marine diatoms. Valenzuela JJ; López García de Lomana A; Lee A; Armbrust EV; Orellana MV; Baliga NS Nat Commun; 2018 Jun; 9(1):2328. PubMed ID: 29899534 [TBL] [Abstract][Full Text] [Related]
64. Photosystem II protein clearance and FtsH function in the diatom Thalassiosira pseudonana. Campbell DA; Hossain Z; Cockshutt AM; Zhaxybayeva O; Wu H; Li G Photosynth Res; 2013 May; 115(1):43-54. PubMed ID: 23504483 [TBL] [Abstract][Full Text] [Related]
65. Nitrogen starvation induces distinct photosynthetic responses and recovery dynamics in diatoms and prasinophytes. Liefer JD; Garg A; Campbell DA; Irwin AJ; Finkel ZV PLoS One; 2018; 13(4):e0195705. PubMed ID: 29641594 [TBL] [Abstract][Full Text] [Related]
66. Meta-analysis of multiple driver effects on marine phytoplankton highlights modulating role of pCO Seifert M; Rost B; Trimborn S; Hauck J Glob Chang Biol; 2020 Dec; 26(12):6787-6804. PubMed ID: 32905664 [TBL] [Abstract][Full Text] [Related]
67. Losing a winner: thermal stress and local pressures outweigh the positive effects of ocean acidification for tropical seagrasses. Collier CJ; Langlois L; Ow Y; Johansson C; Giammusso M; Adams MP; O'Brien KR; Uthicke S New Phytol; 2018 Aug; 219(3):1005-1017. PubMed ID: 29855044 [TBL] [Abstract][Full Text] [Related]
68. High light stress triggers distinct proteomic responses in the marine diatom Thalassiosira pseudonana. Dong HP; Dong YL; Cui L; Balamurugan S; Gao J; Lu SH; Jiang T BMC Genomics; 2016 Dec; 17(1):994. PubMed ID: 27919227 [TBL] [Abstract][Full Text] [Related]
69. Insensitivities of a subtropical productive coastal plankton community and trophic transfer to ocean acidification: Results from a microcosm study. Wang T; Jin P; Wells ML; Trick CG; Gao K Mar Pollut Bull; 2019 Apr; 141():462-471. PubMed ID: 30955757 [TBL] [Abstract][Full Text] [Related]
70. In contrast to diatoms, cryptophytes are susceptible to iron limitation, but not to ocean acidification. Camoying MG; Thoms S; Geuer JK; Koch BP; Bischof K; Trimborn S Physiol Plant; 2022 Jan; 174(1):e13614. PubMed ID: 35199361 [TBL] [Abstract][Full Text] [Related]
71. Predicting Effects of Ocean Acidification and Warming on Algae Lacking Carbon Concentrating Mechanisms. Kübler JE; Dudgeon SR PLoS One; 2015; 10(7):e0132806. PubMed ID: 26172263 [TBL] [Abstract][Full Text] [Related]
72. Antarctic emerald rockcod have the capacity to compensate for warming when uncoupled from CO Davis BE; Flynn EE; Miller NA; Nelson FA; Fangue NA; Todgham AE Glob Chang Biol; 2018 Feb; 24(2):e655-e670. PubMed ID: 29155460 [TBL] [Abstract][Full Text] [Related]
73. Community composition has greater impact on the functioning of marine phytoplankton communities than ocean acidification. Eggers SL; Lewandowska AM; Barcelos E Ramos J; Blanco-Ameijeiras S; Gallo F; Matthiessen B Glob Chang Biol; 2014 Mar; 20(3):713-23. PubMed ID: 24115206 [TBL] [Abstract][Full Text] [Related]
74. A metabolomic approach to investigate effects of ocean acidification on a polar microalga Chlorella sp. Tan YH; Lim PE; Beardall J; Poong SW; Phang SM Aquat Toxicol; 2019 Dec; 217():105349. PubMed ID: 31734626 [TBL] [Abstract][Full Text] [Related]
75. Resting cell formation in the marine diatom Thalassiosira pseudonana. Wang G; Huang L; Zhuang S; Han F; Huang Q; Hao M; Lin G; Chen L; Shen B; Li F; Li X; Chen C; Gao Y; Mock T; Liang J New Phytol; 2024 Aug; 243(4):1347-1360. PubMed ID: 38402560 [TBL] [Abstract][Full Text] [Related]
76. Elevated CO Xu D; Huang S; Fan X; Zhang X; Wang Y; Wang W; Beardall J; Brennan G; Ye N Front Microbiol; 2022; 13():1113388. PubMed ID: 36687610 [TBL] [Abstract][Full Text] [Related]
77. Complex and interactive effects of ocean acidification and warming on the life span of a marine trematode parasite. Franzova VA; MacLeod CD; Wang T; Harley CDG Int J Parasitol; 2019 Dec; 49(13-14):1015-1021. PubMed ID: 31655036 [TBL] [Abstract][Full Text] [Related]
78. Interaction matters: Bottom-up driver interdependencies alter the projected response of phytoplankton communities to climate change. Seifert M; Nissen C; Rost B; Vogt M; Völker C; Hauck J Glob Chang Biol; 2023 Aug; 29(15):4234-4258. PubMed ID: 37265254 [TBL] [Abstract][Full Text] [Related]
79. Ocean warming has a greater effect than acidification on the early life history development and swimming performance of a large circumglobal pelagic fish. Watson SA; Allan BJM; McQueen DE; Nicol S; Parsons DM; Pether SMJ; Pope S; Setiawan AN; Smith N; Wilson C; Munday PL Glob Chang Biol; 2018 Sep; 24(9):4368-4385. PubMed ID: 29790239 [TBL] [Abstract][Full Text] [Related]
80. Diatom growth responses to photoperiod and light are predictable from diel reductant generation. Li G; Talmy D; Campbell DA J Phycol; 2017 Feb; 53(1):95-107. PubMed ID: 27754547 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]