These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 29398136)
1. The sodium phosphate cotransporter family and nicotinamide phosphoribosyltransferase contribute to the daily oscillation of plasma inorganic phosphate concentration. Miyagawa A; Tatsumi S; Takahama W; Fujii O; Nagamoto K; Kinoshita E; Nomura K; Ikuta K; Fujii T; Hanazaki A; Kaneko I; Segawa H; Miyamoto KI Kidney Int; 2018 May; 93(5):1073-1085. PubMed ID: 29398136 [TBL] [Abstract][Full Text] [Related]
2. Phosphaturic action of fibroblast growth factor 23 in Npt2 null mice. Tomoe Y; Segawa H; Shiozawa K; Kaneko I; Tominaga R; Hanabusa E; Aranami F; Furutani J; Kuwahara S; Tatsumi S; Matsumoto M; Ito M; Miyamoto K Am J Physiol Renal Physiol; 2010 Jun; 298(6):F1341-50. PubMed ID: 20357029 [TBL] [Abstract][Full Text] [Related]
3. Npt2a and Npt2c in mice play distinct and synergistic roles in inorganic phosphate metabolism and skeletal development. Segawa H; Onitsuka A; Furutani J; Kaneko I; Aranami F; Matsumoto N; Tomoe Y; Kuwahata M; Ito M; Matsumoto M; Li M; Amizuka N; Miyamoto K Am J Physiol Renal Physiol; 2009 Sep; 297(3):F671-8. PubMed ID: 19570882 [TBL] [Abstract][Full Text] [Related]
4. NAD metabolism and the SLC34 family: evidence for a liver-kidney axis regulating inorganic phosphate. Tatsumi S; Katai K; Kaneko I; Segawa H; Miyamoto KI Pflugers Arch; 2019 Jan; 471(1):109-122. PubMed ID: 30218374 [TBL] [Abstract][Full Text] [Related]
5. Hypophosphatemia in vitamin D receptor null mice: effect of rescue diet on the developmental changes in renal Na+ -dependent phosphate cotransporters. Kaneko I; Segawa H; Furutani J; Kuwahara S; Aranami F; Hanabusa E; Tominaga R; Giral H; Caldas Y; Levi M; Kato S; Miyamoto K Pflugers Arch; 2011 Jan; 461(1):77-90. PubMed ID: 21057807 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of Nicotinamide Phosphoribosyltransferase (NAMPT), an Enzyme Essential for NAD+ Biosynthesis, Leads to Altered Carbohydrate Metabolism in Cancer Cells. Tan B; Dong S; Shepard RL; Kays L; Roth KD; Geeganage S; Kuo MS; Zhao G J Biol Chem; 2015 Jun; 290(25):15812-15824. PubMed ID: 25944913 [TBL] [Abstract][Full Text] [Related]
8. Role of the putative PKC phosphorylation sites of the type IIc sodium-dependent phosphate transporter in parathyroid hormone regulation. Fujii T; Segawa H; Hanazaki A; Nishiguchi S; Minoshima S; Ohi A; Tominaga R; Sasaki S; Tanifuji K; Koike M; Arima Y; Shiozaki Y; Kaneko I; Ito M; Tatsumi S; Miyamoto KI Clin Exp Nephrol; 2019 Jul; 23(7):898-907. PubMed ID: 30895530 [TBL] [Abstract][Full Text] [Related]
9. Proximal tubular handling of phosphate: A molecular perspective. Forster IC; Hernando N; Biber J; Murer H Kidney Int; 2006 Nov; 70(9):1548-59. PubMed ID: 16955105 [TBL] [Abstract][Full Text] [Related]
10. Expression of renal and intestinal Na/Pi cotransporters in the absence of GABARAP. Reining SC; Liesegang A; Betz H; Biber J; Murer H; Hernando N Pflugers Arch; 2010 Jun; 460(1):207-17. PubMed ID: 20354864 [TBL] [Abstract][Full Text] [Related]
11. Downregulation of renal type IIa sodium-dependent phosphate cotransporter during lipopolysaccharide-induced acute inflammation. Ikeda S; Yamamoto H; Masuda M; Takei Y; Nakahashi O; Kozai M; Tanaka S; Nakao M; Taketani Y; Segawa H; Iwano M; Miyamoto K; Takeda E Am J Physiol Renal Physiol; 2014 Apr; 306(7):F744-50. PubMed ID: 24500689 [TBL] [Abstract][Full Text] [Related]
12. An apical expression signal of the renal type IIc Na+-dependent phosphate cotransporter in renal epithelial cells. Ito M; Sakurai A; Hayashi K; Ohi A; Kangawa N; Nishiyama T; Sugino S; Uehata Y; Kamahara A; Sakata M; Tatsumi S; Kuwahata M; Taketani Y; Segawa H; Miyamoto K Am J Physiol Renal Physiol; 2010 Jul; 299(1):F243-54. PubMed ID: 20410212 [TBL] [Abstract][Full Text] [Related]
13. Vitamin D Thomas L; Dissanayake LV; Tahmasbi M; Staruschenko A; Al-Masri S; Dominguez Rieg JA; Rieg T Sci Rep; 2024 Jul; 14(1):16997. PubMed ID: 39043847 [TBL] [Abstract][Full Text] [Related]
14. In vivo evidence for a limited role of proximal tubular Klotho in renal phosphate handling. Ide N; Olauson H; Sato T; Densmore MJ; Wang H; Hanai JI; Larsson TE; Lanske B Kidney Int; 2016 Aug; 90(2):348-362. PubMed ID: 27292223 [TBL] [Abstract][Full Text] [Related]
16. Hepatectomy-related hypophosphatemia: a novel phosphaturic factor in the liver-kidney axis. Nomura K; Tatsumi S; Miyagawa A; Shiozaki Y; Sasaki S; Kaneko I; Ito M; Kido S; Segawa H; Sano M; Fukuwatari T; Shibata K; Miyamoto K J Am Soc Nephrol; 2014 Apr; 25(4):761-72. PubMed ID: 24262791 [TBL] [Abstract][Full Text] [Related]
17. Expression of NaPi-IIb in rodent and human kidney and upregulation in a model of chronic kidney disease. Motta SE; Imenez Silva PH; Daryadel A; Haykir B; Pastor-Arroyo EM; Bettoni C; Hernando N; Wagner CA Pflugers Arch; 2020 Apr; 472(4):449-460. PubMed ID: 32219532 [TBL] [Abstract][Full Text] [Related]
18. Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate. Villa-Bellosta R; Sorribas V Toxicol Appl Pharmacol; 2008 Oct; 232(1):125-34. PubMed ID: 18586044 [TBL] [Abstract][Full Text] [Related]
19. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Nakahata Y; Sahar S; Astarita G; Kaluzova M; Sassone-Corsi P Science; 2009 May; 324(5927):654-7. PubMed ID: 19286518 [TBL] [Abstract][Full Text] [Related]
20. Oleate ameliorates palmitate-induced reduction of NAMPT activity and NAD levels in primary human hepatocytes and hepatocarcinoma cells. Penke M; Schuster S; Gorski T; Gebhardt R; Kiess W; Garten A Lipids Health Dis; 2017 Oct; 16(1):191. PubMed ID: 28974242 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]