BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 29398136)

  • 1. The sodium phosphate cotransporter family and nicotinamide phosphoribosyltransferase contribute to the daily oscillation of plasma inorganic phosphate concentration.
    Miyagawa A; Tatsumi S; Takahama W; Fujii O; Nagamoto K; Kinoshita E; Nomura K; Ikuta K; Fujii T; Hanazaki A; Kaneko I; Segawa H; Miyamoto KI
    Kidney Int; 2018 May; 93(5):1073-1085. PubMed ID: 29398136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphaturic action of fibroblast growth factor 23 in Npt2 null mice.
    Tomoe Y; Segawa H; Shiozawa K; Kaneko I; Tominaga R; Hanabusa E; Aranami F; Furutani J; Kuwahara S; Tatsumi S; Matsumoto M; Ito M; Miyamoto K
    Am J Physiol Renal Physiol; 2010 Jun; 298(6):F1341-50. PubMed ID: 20357029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Npt2a and Npt2c in mice play distinct and synergistic roles in inorganic phosphate metabolism and skeletal development.
    Segawa H; Onitsuka A; Furutani J; Kaneko I; Aranami F; Matsumoto N; Tomoe Y; Kuwahata M; Ito M; Matsumoto M; Li M; Amizuka N; Miyamoto K
    Am J Physiol Renal Physiol; 2009 Sep; 297(3):F671-8. PubMed ID: 19570882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NAD metabolism and the SLC34 family: evidence for a liver-kidney axis regulating inorganic phosphate.
    Tatsumi S; Katai K; Kaneko I; Segawa H; Miyamoto KI
    Pflugers Arch; 2019 Jan; 471(1):109-122. PubMed ID: 30218374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypophosphatemia in vitamin D receptor null mice: effect of rescue diet on the developmental changes in renal Na+ -dependent phosphate cotransporters.
    Kaneko I; Segawa H; Furutani J; Kuwahara S; Aranami F; Hanabusa E; Tominaga R; Giral H; Caldas Y; Levi M; Kato S; Miyamoto K
    Pflugers Arch; 2011 Jan; 461(1):77-90. PubMed ID: 21057807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of Nicotinamide Phosphoribosyltransferase (NAMPT), an Enzyme Essential for NAD+ Biosynthesis, Leads to Altered Carbohydrate Metabolism in Cancer Cells.
    Tan B; Dong S; Shepard RL; Kays L; Roth KD; Geeganage S; Kuo MS; Zhao G
    J Biol Chem; 2015 Jun; 290(25):15812-15824. PubMed ID: 25944913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inorganic phosphate homeostasis in sodium-dependent phosphate cotransporter Npt2b⁺/⁻ mice.
    Ohi A; Hanabusa E; Ueda O; Segawa H; Horiba N; Kaneko I; Kuwahara S; Mukai T; Sasaki S; Tominaga R; Furutani J; Aranami F; Ohtomo S; Oikawa Y; Kawase Y; Wada NA; Tachibe T; Kakefuda M; Tateishi H; Matsumoto K; Tatsumi S; Kido S; Fukushima N; Jishage K; Miyamoto K
    Am J Physiol Renal Physiol; 2011 Nov; 301(5):F1105-13. PubMed ID: 21816756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the putative PKC phosphorylation sites of the type IIc sodium-dependent phosphate transporter in parathyroid hormone regulation.
    Fujii T; Segawa H; Hanazaki A; Nishiguchi S; Minoshima S; Ohi A; Tominaga R; Sasaki S; Tanifuji K; Koike M; Arima Y; Shiozaki Y; Kaneko I; Ito M; Tatsumi S; Miyamoto KI
    Clin Exp Nephrol; 2019 Jul; 23(7):898-907. PubMed ID: 30895530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proximal tubular handling of phosphate: A molecular perspective.
    Forster IC; Hernando N; Biber J; Murer H
    Kidney Int; 2006 Nov; 70(9):1548-59. PubMed ID: 16955105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of renal and intestinal Na/Pi cotransporters in the absence of GABARAP.
    Reining SC; Liesegang A; Betz H; Biber J; Murer H; Hernando N
    Pflugers Arch; 2010 Jun; 460(1):207-17. PubMed ID: 20354864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Downregulation of renal type IIa sodium-dependent phosphate cotransporter during lipopolysaccharide-induced acute inflammation.
    Ikeda S; Yamamoto H; Masuda M; Takei Y; Nakahashi O; Kozai M; Tanaka S; Nakao M; Taketani Y; Segawa H; Iwano M; Miyamoto K; Takeda E
    Am J Physiol Renal Physiol; 2014 Apr; 306(7):F744-50. PubMed ID: 24500689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An apical expression signal of the renal type IIc Na+-dependent phosphate cotransporter in renal epithelial cells.
    Ito M; Sakurai A; Hayashi K; Ohi A; Kangawa N; Nishiyama T; Sugino S; Uehata Y; Kamahara A; Sakata M; Tatsumi S; Kuwahata M; Taketani Y; Segawa H; Miyamoto K
    Am J Physiol Renal Physiol; 2010 Jul; 299(1):F243-54. PubMed ID: 20410212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo evidence for a limited role of proximal tubular Klotho in renal phosphate handling.
    Ide N; Olauson H; Sato T; Densmore MJ; Wang H; Hanai JI; Larsson TE; Lanske B
    Kidney Int; 2016 Aug; 90(2):348-362. PubMed ID: 27292223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal phosphaturia during metabolic acidosis revisited: molecular mechanisms for decreased renal phosphate reabsorption.
    Nowik M; Picard N; Stange G; Capuano P; Tenenhouse HS; Biber J; Murer H; Wagner CA
    Pflugers Arch; 2008 Nov; 457(2):539-49. PubMed ID: 18535837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hepatectomy-related hypophosphatemia: a novel phosphaturic factor in the liver-kidney axis.
    Nomura K; Tatsumi S; Miyagawa A; Shiozaki Y; Sasaki S; Kaneko I; Ito M; Kido S; Segawa H; Sano M; Fukuwatari T; Shibata K; Miyamoto K
    J Am Soc Nephrol; 2014 Apr; 25(4):761-72. PubMed ID: 24262791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of NaPi-IIb in rodent and human kidney and upregulation in a model of chronic kidney disease.
    Motta SE; Imenez Silva PH; Daryadel A; Haykir B; Pastor-Arroyo EM; Bettoni C; Hernando N; Wagner CA
    Pflugers Arch; 2020 Apr; 472(4):449-460. PubMed ID: 32219532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate.
    Villa-Bellosta R; Sorribas V
    Toxicol Appl Pharmacol; 2008 Oct; 232(1):125-34. PubMed ID: 18586044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1.
    Nakahata Y; Sahar S; Astarita G; Kaluzova M; Sassone-Corsi P
    Science; 2009 May; 324(5927):654-7. PubMed ID: 19286518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oleate ameliorates palmitate-induced reduction of NAMPT activity and NAD levels in primary human hepatocytes and hepatocarcinoma cells.
    Penke M; Schuster S; Gorski T; Gebhardt R; Kiess W; Garten A
    Lipids Health Dis; 2017 Oct; 16(1):191. PubMed ID: 28974242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnesium stimulates renal phosphate reabsorption.
    Thumfart J; Jung S; Amasheh S; Krämer S; Peters H; Sommer K; Biber J; Murer H; Meij I; Querfeld U; Wagner CA; Müller D
    Am J Physiol Renal Physiol; 2008 Oct; 295(4):F1126-33. PubMed ID: 18701629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.