BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 29398142)

  • 1. Low- and high-frequency cortical brain oscillations reflect dissociable mechanisms of concurrent speech segregation in noise.
    Yellamsetty A; Bidelman GM
    Hear Res; 2018 Apr; 361():92-102. PubMed ID: 29398142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noise and pitch interact during the cortical segregation of concurrent speech.
    Bidelman GM; Yellamsetty A
    Hear Res; 2017 Aug; 351():34-44. PubMed ID: 28578876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brainstem correlates of concurrent speech identification in adverse listening conditions.
    Yellamsetty A; Bidelman GM
    Brain Res; 2019 Jul; 1714():182-192. PubMed ID: 30796895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Language experience-dependent advantage in pitch representation in the auditory cortex is limited to favorable signal-to-noise ratios.
    Suresh CH; Krishnan A; Gandour JT
    Hear Res; 2017 Nov; 355():42-53. PubMed ID: 28927640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural indices of phonemic discrimination and sentence-level speech intelligibility in quiet and noise: A P3 study.
    Koerner TK; Zhang Y; Nelson PB; Wang B; Zou H
    Hear Res; 2017 Jul; 350():58-67. PubMed ID: 28441570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voice segregation by difference in fundamental frequency: effect of masker type.
    Deroche ML; Culling JF
    J Acoust Soc Am; 2013 Nov; 134(5):EL465-70. PubMed ID: 24181992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voice segregation by difference in fundamental frequency: evidence for harmonic cancellation.
    Deroche ML; Culling JF
    J Acoust Soc Am; 2011 Nov; 130(5):2855-65. PubMed ID: 22087914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced speech perception in noise and cortical auditory evoked potentials in professional musicians.
    Meha-Bettison K; Sharma M; Ibrahim RK; Mandikal Vasuki PR
    Int J Audiol; 2018 Jan; 57(1):40-52. PubMed ID: 28971719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noise tolerance in human frequency-following responses to voice pitch.
    Li X; Jeng FC
    J Acoust Soc Am; 2011 Jan; 129(1):EL21-6. PubMed ID: 21302977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pitch strength of noise-vocoded harmonic tone complexes in normal-hearing listeners.
    Shofner WP; Campbell J
    J Acoust Soc Am; 2012 Nov; 132(5):EL398-404. PubMed ID: 23145701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brainstem-cortical functional connectivity for speech is differentially challenged by noise and reverberation.
    Bidelman GM; Davis MK; Pridgen MH
    Hear Res; 2018 Sep; 367():149-160. PubMed ID: 29871826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects.
    Auinger AB; Riss D; Liepins R; Rader T; Keck T; Keintzel T; Kaider A; Baumgartner WD; Gstoettner W; Arnoldner C
    Hear Res; 2017 Jul; 350():226-234. PubMed ID: 28527538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional changes in inter- and intra-hemispheric cortical processing underlying degraded speech perception.
    Bidelman GM; Howell M
    Neuroimage; 2016 Jan; 124(Pt A):581-590. PubMed ID: 26386346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological and behavioral measures of some speech contrasts in varied attention and noise.
    Morris DJ; Tøndering J; Lindgren M
    Hear Res; 2019 Mar; 373():1-9. PubMed ID: 30553033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of speech in noise after application of time-frequency masks: dependence on frequency and threshold parameters.
    Sinex DG
    J Acoust Soc Am; 2013 Apr; 133(4):2390-6. PubMed ID: 23556604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of fundamental frequency and vocal-tract length cues on sentence segregation by listeners with hearing loss.
    Mackersie CL; Dewey J; Guthrie LA
    J Acoust Soc Am; 2011 Aug; 130(2):1006-19. PubMed ID: 21877813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of low-frequency harmonics to Mandarin Chinese tone identification in quiet and six-talker babble background.
    Liu C; Azimi B; Bhandary M; Hu Y
    J Acoust Soc Am; 2014 Jan; 135(1):428-38. PubMed ID: 24437783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brainstem correlates of speech-in-noise perception in children.
    Anderson S; Skoe E; Chandrasekaran B; Zecker S; Kraus N
    Hear Res; 2010 Dec; 270(1-2):151-7. PubMed ID: 20708671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vowel and tone recognition in quiet and in noise among Mandarin-speaking amusics.
    Tang W; Wang XJ; Li JQ; Liu C; Dong Q; Nan Y
    Hear Res; 2018 Jun; 363():62-69. PubMed ID: 29534831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perceptual effects of noise reduction by time-frequency masking of noisy speech.
    Brons I; Houben R; Dreschler WA
    J Acoust Soc Am; 2012 Oct; 132(4):2690-9. PubMed ID: 23039461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.