These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

499 related articles for article (PubMed ID: 29398214)

  • 21. A genetic study of the Arabidopsis circadian clock with reference to the TIMING OF CAB EXPRESSION 1 (TOC1) gene.
    Ito S; Kawamura H; Niwa Y; Nakamichi N; Yamashino T; Mizuno T
    Plant Cell Physiol; 2009 Feb; 50(2):290-303. PubMed ID: 19098071
    [TBL] [Abstract][Full Text] [Related]  

  • 22. LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis.
    Mizoguchi T; Wheatley K; Hanzawa Y; Wright L; Mizoguchi M; Song HR; Carré IA; Coupland G
    Dev Cell; 2002 May; 2(5):629-41. PubMed ID: 12015970
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aberrant temporal growth pattern and morphology of root and shoot caused by a defective circadian clock in Arabidopsis thaliana.
    Ruts T; Matsubara S; Wiese-Klinkenberg A; Walter A
    Plant J; 2012 Oct; 72(1):154-61. PubMed ID: 22694320
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The central circadian clock proteins CCA1 and LHY regulate iron homeostasis in Arabidopsis.
    Xu G; Jiang Z; Wang H; Lin R
    J Integr Plant Biol; 2019 Feb; 61(2):168-181. PubMed ID: 29989313
    [TBL] [Abstract][Full Text] [Related]  

  • 25. WRKY55 transcription factor positively regulates leaf senescence and the defense response by modulating the transcription of genes implicated in the biosynthesis of reactive oxygen species and salicylic acid in
    Wang Y; Cui X; Yang B; Xu S; Wei X; Zhao P; Niu F; Sun M; Wang C; Cheng H; Jiang YQ
    Development; 2020 Aug; 147(16):. PubMed ID: 32680933
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A functional link between rhythmic changes in chromatin structure and the Arabidopsis biological clock.
    Perales M; Más P
    Plant Cell; 2007 Jul; 19(7):2111-23. PubMed ID: 17616736
    [TBL] [Abstract][Full Text] [Related]  

  • 27. LUX ARRHYTHMO mediates crosstalk between the circadian clock and defense in Arabidopsis.
    Zhang C; Gao M; Seitz NC; Angel W; Hallworth A; Wiratan L; Darwish O; Alkharouf N; Dawit T; Lin D; Egoshi R; Wang X; McClung CR; Lu H
    Nat Commun; 2019 Jun; 10(1):2543. PubMed ID: 31186426
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae.
    Hu Y; Dong Q; Yu D
    Plant Sci; 2012 Apr; 185-186():288-97. PubMed ID: 22325892
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modelling the widespread effects of TOC1 signalling on the plant circadian clock and its outputs.
    Pokhilko A; Mas P; Millar AJ
    BMC Syst Biol; 2013 Mar; 7():23. PubMed ID: 23506153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CCA1 and LHY contribute to nonhost resistance to
    Yamaura S; Yamauchi Y; Makihara M; Yamashino T; Ishikawa A
    Biosci Biotechnol Biochem; 2020 Jan; 84(1):76-84. PubMed ID: 31478783
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae.
    Kim KC; Fan B; Chen Z
    Plant Physiol; 2006 Nov; 142(3):1180-92. PubMed ID: 16963526
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CCA1 alternative splicing as a way of linking the circadian clock to temperature response in Arabidopsis.
    Park MJ; Seo PJ; Park CM
    Plant Signal Behav; 2012 Sep; 7(9):1194-6. PubMed ID: 22899064
    [TBL] [Abstract][Full Text] [Related]  

  • 33. LATE ELONGATED HYPOCOTYL regulates photoperiodic flowering via the circadian clock in Arabidopsis.
    Park MJ; Kwon YJ; Gil KE; Park CM
    BMC Plant Biol; 2016 May; 16(1):114. PubMed ID: 27207270
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor.
    Gendron JM; Pruneda-Paz JL; Doherty CJ; Gross AM; Kang SE; Kay SA
    Proc Natl Acad Sci U S A; 2012 Feb; 109(8):3167-72. PubMed ID: 22315425
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MYB transcription factors in the Arabidopsis circadian clock.
    Carré IA; Kim JY
    J Exp Bot; 2002 Jul; 53(374):1551-7. PubMed ID: 12096093
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional implication of the MYB transcription factor RVE8/LCL5 in the circadian control of histone acetylation.
    Farinas B; Mas P
    Plant J; 2011 Apr; 66(2):318-29. PubMed ID: 21205033
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Blue Light- and Low Temperature-Regulated COR27 and COR28 Play Roles in the Arabidopsis Circadian Clock.
    Li X; Ma D; Lu SX; Hu X; Huang R; Liang T; Xu T; Tobin EM; Liu H
    Plant Cell; 2016 Nov; 28(11):2755-2769. PubMed ID: 27837007
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unproductive alternative splicing and nonsense mRNAs: a widespread phenomenon among plant circadian clock genes.
    Filichkin SA; Mockler TC
    Biol Direct; 2012 Jul; 7():20. PubMed ID: 22747664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock.
    Farré EM; Harmer SL; Harmon FG; Yanovsky MJ; Kay SA
    Curr Biol; 2005 Jan; 15(1):47-54. PubMed ID: 15649364
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rhythmic oscillation of histone acetylation and methylation at the Arabidopsis central clock loci.
    Song HR; Noh YS
    Mol Cells; 2012 Sep; 34(3):279-87. PubMed ID: 22878891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.