These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29398290)

  • 21. Variation in assimilable organic carbon formation during chlorination of Microcystis aeruginosa extracellular organic matter solutions.
    Sun X; Yuan T; Ni H; Li Y; Hu Y
    J Environ Sci (China); 2016 Jul; 45():1-6. PubMed ID: 27372113
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbial characterization and population changes in nonpotable reclaimed water distribution systems.
    Ryu H; Alum A; Abbaszadegan M
    Environ Sci Technol; 2005 Nov; 39(22):8600-5. PubMed ID: 16323753
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation of assimilable organic carbon (AOC) in flemish drinking water.
    Polanska M; Huysman K; van Keer C
    Water Res; 2005 Jun; 39(11):2259-66. PubMed ID: 15925396
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphorus limitation on bacterial regrowth in drinking water.
    Sang JQ; Zhang XH; Yu GZ; Wang ZS
    J Environ Sci (China); 2003 Nov; 15(6):773-8. PubMed ID: 14758895
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determination of an acceptable assimilable organic carbon (AOC) level for biological stability in water distribution systems with minimized chlorine residual.
    Ohkouchi Y; Ly BT; Ishikawa S; Kawano Y; Itoh S
    Environ Monit Assess; 2013 Feb; 185(2):1427-36. PubMed ID: 22527469
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A survey on levels and seasonal changes of assimilable organic carbon (AOC) and its precursors in drinking water.
    Ohkouchi Y; Ly BT; Ishikawa S; Aoki Y; Echigo S; Itoh S
    Environ Technol; 2011 Oct; 32(13-14):1605-13. PubMed ID: 22329152
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A rapid technique for assessing assimilable organic carbon of UV/H2O2-treated water.
    Bazri MM; Mohseni M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(9):1086-93. PubMed ID: 23573929
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modification on the conventional procedure to measure AOC in drinking water.
    Li FZ; Sang JQ; Zhang XH; Wang ZS
    J Environ Sci (China); 2004; 16(6):996-1000. PubMed ID: 15900737
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of flow cytometry to monitor assimilable organic carbon (AOC) and microbial community changes in water.
    Elhadidy AM; Van Dyke MI; Peldszus S; Huck PM
    J Microbiol Methods; 2016 Nov; 130():154-163. PubMed ID: 27638413
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of enhanced assimilable organic carbon method across operational drinking water systems.
    Pick FC; Fish KE; Biggs CA; Moses JP; Moore G; Boxall JB
    PLoS One; 2019; 14(12):e0225477. PubMed ID: 31809502
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Variation and removal efficiency of assimilable organic carbon (AOC) in an advanced water treatment system.
    Lou JC; Chen BH; Chang TW; Yang HW; Han JY
    Environ Monit Assess; 2011 Jul; 178(1-4):73-83. PubMed ID: 20835921
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of different molecular weight organic components on the increase of microbial growth potential of secondary effluent by ozonation.
    Zhao X; Hu HY; Yu T; Su C; Jiang H; Liu S
    J Environ Sci (China); 2014 Nov; 26(11):2190-7. PubMed ID: 25458672
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Formation of assimilable organic carbon during oxidation of natural waters with ozone, chlorine dioxide, chlorine, permanganate, and ferrate.
    Ramseier MK; Peter A; Traber J; von Gunten U
    Water Res; 2011 Feb; 45(5):2002-10. PubMed ID: 21220144
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effective removal of disinfection by-products and assimilable organic carbon: an advanced water treatment system.
    Lou JC; Chang TW; Huang CE
    J Hazard Mater; 2009 Dec; 172(2-3):1365-71. PubMed ID: 19744776
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Relationship between phosphorus and bacterial regrowth in drinking water].
    Jiang DL; Zhang XJ
    Huan Jing Ke Xue; 2004 Sep; 25(5):57-60. PubMed ID: 15623023
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biodegradable organic matter and rapid-rate biofilter performance: A review.
    Terry LG; Summers RS
    Water Res; 2018 Jan; 128():234-245. PubMed ID: 29107908
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect and influence mechanism of biofilm formation on the biological stability of reclaimed water.
    Ren X; Zhang S; Wu M; Xiao B; Miao H; Chen H
    Sci Total Environ; 2024 Jan; 906():167735. PubMed ID: 37827320
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research.
    Richardson SD; Plewa MJ; Wagner ED; Schoeny R; Demarini DM
    Mutat Res; 2007; 636(1-3):178-242. PubMed ID: 17980649
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coagulation increased the growth potential of various species bacteria of the effluent of a MBR for the treatment of domestic wastewater.
    Yu T; Li G; Lin W; Hu HY; Lu Y
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5126-5133. PubMed ID: 26910827
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biological stability in drinking water: a regression analysis of influencing factors.
    Lu W; Zhang XJ
    J Environ Sci (China); 2005; 17(3):395-8. PubMed ID: 16083110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.