These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 29398359)
41. The relationship between BOLD and neural activity arises from temporally sparse events. Zhang X; Pan WJ; Keilholz SD Neuroimage; 2020 Feb; 207():116390. PubMed ID: 31785420 [TBL] [Abstract][Full Text] [Related]
42. Mapping cortical representations of the rodent forepaw and hindpaw with BOLD fMRI reveals two spatial boundaries. Goloshevsky AG; Wu CW; Dodd SJ; Koretsky AP Neuroimage; 2011 Jul; 57(2):526-38. PubMed ID: 21504796 [TBL] [Abstract][Full Text] [Related]
43. Neural correlates of time-varying functional connectivity in the rat. Thompson GJ; Merritt MD; Pan WJ; Magnuson ME; Grooms JK; Jaeger D; Keilholz SD Neuroimage; 2013 Dec; 83():826-36. PubMed ID: 23876248 [TBL] [Abstract][Full Text] [Related]
44. A dynamical model of the laminar BOLD response. Havlicek M; Uludağ K Neuroimage; 2020 Jan; 204():116209. PubMed ID: 31546051 [TBL] [Abstract][Full Text] [Related]
45. Correlating the alpha rhythm to BOLD using simultaneous EEG/fMRI: inter-subject variability. Gonçalves SI; de Munck JC; Pouwels PJ; Schoonhoven R; Kuijer JP; Maurits NM; Hoogduin JM; Van Someren EJ; Heethaar RM; Lopes da Silva FH Neuroimage; 2006 Mar; 30(1):203-13. PubMed ID: 16290018 [TBL] [Abstract][Full Text] [Related]
46. Spatiotemporal characteristics and vascular sources of neural-specific and -nonspecific fMRI signals at submillimeter columnar resolution. Moon CH; Fukuda M; Kim SG Neuroimage; 2013 Jan; 64():91-103. PubMed ID: 22960251 [TBL] [Abstract][Full Text] [Related]
47. Cortex-based inter-subject analysis of iEEG and fMRI data sets: application to sustained task-related BOLD and gamma responses. Esposito F; Singer N; Podlipsky I; Fried I; Hendler T; Goebel R Neuroimage; 2013 Feb; 66():457-68. PubMed ID: 23138047 [TBL] [Abstract][Full Text] [Related]
48. Differential coupling between subcortical calcium and BOLD signals during evoked and resting state through simultaneous calcium fiber photometry and fMRI. Tong C; Dai JK; Chen Y; Zhang K; Feng Y; Liang Z Neuroimage; 2019 Oct; 200():405-413. PubMed ID: 31280011 [TBL] [Abstract][Full Text] [Related]
49. Invalidation of fMRI experiments secondary to neurovascular uncoupling in patients with cerebrovascular disease. Para AE; Sam K; Poublanc J; Fisher JA; Crawley AP; Mikulis DJ J Magn Reson Imaging; 2017 Nov; 46(5):1448-1455. PubMed ID: 28152241 [TBL] [Abstract][Full Text] [Related]
50. Biophysically based method to deconvolve spatiotemporal neurovascular signals from fMRI data. Pang JC; Aquino KM; Robinson PA; Lacy TC; Schira MM J Neurosci Methods; 2018 Oct; 308():6-20. PubMed ID: 30026070 [TBL] [Abstract][Full Text] [Related]
51. Linking brain vascular physiology to hemodynamic response in ultra-high field MRI. Uludağ K; Blinder P Neuroimage; 2018 Mar; 168():279-295. PubMed ID: 28254456 [TBL] [Abstract][Full Text] [Related]
52. Low-frequency calcium oscillations accompany deoxyhemoglobin oscillations in rat somatosensory cortex. Du C; Volkow ND; Koretsky AP; Pan Y Proc Natl Acad Sci U S A; 2014 Oct; 111(43):E4677-86. PubMed ID: 25313035 [TBL] [Abstract][Full Text] [Related]
53. Linear aspects of transformation from interictal epileptic discharges to BOLD fMRI signals in an animal model of occipital epilepsy. Mirsattari SM; Wang Z; Ives JR; Bihari F; Leung LS; Bartha R; Menon RS Neuroimage; 2006 May; 30(4):1133-48. PubMed ID: 16414283 [TBL] [Abstract][Full Text] [Related]
54. Detecting resting-state brain activity by spontaneous cerebral blood volume fluctuations using whole brain vascular space occupancy imaging. Miao X; Gu H; Yan L; Lu H; Wang DJ; Zhou XJ; Zhuo Y; Yang Y Neuroimage; 2014 Jan; 84():575-84. PubMed ID: 24055705 [TBL] [Abstract][Full Text] [Related]
55. A cortical vascular model for examining the specificity of the laminar BOLD signal. Markuerkiaga I; Barth M; Norris DG Neuroimage; 2016 May; 132():491-498. PubMed ID: 26952195 [TBL] [Abstract][Full Text] [Related]
56. Concurrent tACS-fMRI Reveals Causal Influence of Power Synchronized Neural Activity on Resting State fMRI Connectivity. Bächinger M; Zerbi V; Moisa M; Polania R; Liu Q; Mantini D; Ruff C; Wenderoth N J Neurosci; 2017 May; 37(18):4766-4777. PubMed ID: 28385876 [TBL] [Abstract][Full Text] [Related]
57. Cerebral blood flow and fMRI BOLD auditory language activation in temporal lobe epilepsy. Appel S; Duke ES; Martinez AR; Khan OI; Dustin IM; Reeves-Tyer P; Berl MB; Sato S; Gaillard WD; Theodore WH Epilepsia; 2012 Apr; 53(4):631-8. PubMed ID: 22332720 [TBL] [Abstract][Full Text] [Related]
58. Layer-dependent BOLD and CBV-weighted fMRI responses in the rat olfactory bulb. Poplawsky AJ; Kim SG Neuroimage; 2014 May; 91():237-51. PubMed ID: 24418506 [TBL] [Abstract][Full Text] [Related]
59. Periods of rest in fMRI contain individual spontaneous events which are related to slowly fluctuating spontaneous activity. Petridou N; Gaudes CC; Dryden IL; Francis ST; Gowland PA Hum Brain Mapp; 2013 Jun; 34(6):1319-29. PubMed ID: 22331588 [TBL] [Abstract][Full Text] [Related]
60. Role of mitochondrial calcium uptake homeostasis in resting state fMRI brain networks. Kannurpatti SS; Sanganahalli BG; Herman P; Hyder F NMR Biomed; 2015 Nov; 28(11):1579-88. PubMed ID: 26439799 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]