These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 29398482)
1. Testicular Architecture Is Critical for Mediation of Retinoic Acid Responsiveness by Undifferentiated Spermatogonial Subtypes in the Mouse. Lord T; Oatley MJ; Oatley JM Stem Cell Reports; 2018 Feb; 10(2):538-552. PubMed ID: 29398482 [TBL] [Abstract][Full Text] [Related]
2. Characterizing the Spermatogonial Response to Retinoic Acid During the Onset of Spermatogenesis and Following Synchronization in the Neonatal Mouse Testis. Agrimson KS; Onken J; Mitchell D; Topping TB; Chiarini-Garcia H; Hogarth CA; Griswold MD Biol Reprod; 2016 Oct; 95(4):81. PubMed ID: 27488029 [TBL] [Abstract][Full Text] [Related]
3. Retinoic acid deficiency leads to an increase in spermatogonial stem number in the neonatal mouse testis, but excess retinoic acid results in no change. Agrimson KS; Oatley MJ; Mitchell D; Oatley JM; Griswold MD; Hogarth CA Dev Biol; 2017 Dec; 432(2):229-236. PubMed ID: 29037932 [TBL] [Abstract][Full Text] [Related]
4. Differential RA responsiveness directs formation of functionally distinct spermatogonial populations at the initiation of spermatogenesis in the mouse. Velte EK; Niedenberger BA; Serra ND; Singh A; Roa-DeLaCruz L; Hermann BP; Geyer CB Development; 2019 May; 146(12):. PubMed ID: 31023878 [TBL] [Abstract][Full Text] [Related]
5. Differential RA responsiveness among subsets of mouse late progenitor spermatogonia. Suzuki S; McCarrey JR; Hermann BP Reproduction; 2021 May; 161(6):645-655. PubMed ID: 33835049 [TBL] [Abstract][Full Text] [Related]
6. Macrophages Contribute to the Spermatogonial Niche in the Adult Testis. DeFalco T; Potter SJ; Williams AV; Waller B; Kan MJ; Capel B Cell Rep; 2015 Aug; 12(7):1107-19. PubMed ID: 26257171 [TBL] [Abstract][Full Text] [Related]
7. Differential responsiveness of spermatogonia to retinoic acid dictates precocious differentiation but not meiotic entry during steady-state spermatogenesis†. Johnson TA; Niedenberger BA; Kirsanov O; Harrington EV; Malachowski T; Geyer CB Biol Reprod; 2023 May; 108(5):822-836. PubMed ID: 36708226 [TBL] [Abstract][Full Text] [Related]
8. Retinoic acid availability drives the asynchronous initiation of spermatogonial differentiation in the mouse. Snyder EM; Small C; Griswold MD Biol Reprod; 2010 Nov; 83(5):783-90. PubMed ID: 20650878 [TBL] [Abstract][Full Text] [Related]
9. Stage-specific embryonic antigen 4 is a membrane marker for enrichment of porcine spermatogonial stem cells. Zhang P; Li F; Zhang L; Lei P; Zheng Y; Zeng W Andrology; 2020 Nov; 8(6):1923-1934. PubMed ID: 32691968 [TBL] [Abstract][Full Text] [Related]
10. SALL4 expression in gonocytes and spermatogonial clones of postnatal mouse testes. Gassei K; Orwig KE PLoS One; 2013; 8(1):e53976. PubMed ID: 23326552 [TBL] [Abstract][Full Text] [Related]
11. Marker expression reveals heterogeneity of spermatogonia in the neonatal mouse testis. Niedenberger BA; Busada JT; Geyer CB Reproduction; 2015 Apr; 149(4):329-38. PubMed ID: 25737569 [TBL] [Abstract][Full Text] [Related]
12. Sertoli cells dictate spermatogonial stem cell niches in the mouse testis. Oatley MJ; Racicot KE; Oatley JM Biol Reprod; 2011 Apr; 84(4):639-45. PubMed ID: 21084712 [TBL] [Abstract][Full Text] [Related]
13. Expression of transcriptional factor EB (TFEB) in differentiating spermatogonia potentially promotes cell migration in mouse seminiferous epithelium. Liu Y; Hu Y; Wang L; Xu C Reprod Biol Endocrinol; 2018 Oct; 16(1):105. PubMed ID: 30360758 [TBL] [Abstract][Full Text] [Related]
14. Mammalian target of rapamycin complex 1 (mTORC1) Is required for mouse spermatogonial differentiation in vivo. Busada JT; Niedenberger BA; Velte EK; Keiper BD; Geyer CB Dev Biol; 2015 Nov; 407(1):90-102. PubMed ID: 26254600 [TBL] [Abstract][Full Text] [Related]
15. Single-Nucleus RNA-Seq Reveals Spermatogonial Stem Cell Developmental Pattern in Shaziling Pigs. Tang X; Chen C; Yan S; Yang A; Deng Y; Chen B; Gu J Biomolecules; 2024 May; 14(6):. PubMed ID: 38927011 [TBL] [Abstract][Full Text] [Related]
16. In Vitro Derivation and Propagation of Spermatogonial Stem Cell Activity from Mouse Pluripotent Stem Cells. Ishikura Y; Yabuta Y; Ohta H; Hayashi K; Nakamura T; Okamoto I; Yamamoto T; Kurimoto K; Shirane K; Sasaki H; Saitou M Cell Rep; 2016 Dec; 17(10):2789-2804. PubMed ID: 27926879 [TBL] [Abstract][Full Text] [Related]
17. Expression dynamics of self-renewal factors for spermatogonial stem cells in the mouse testis. Sakai M; Masaki K; Aiba S; Tone M; Takashima S J Reprod Dev; 2018 Jun; 64(3):267-275. PubMed ID: 29657241 [TBL] [Abstract][Full Text] [Related]
18. Periodic production of retinoic acid by meiotic and somatic cells coordinates four transitions in mouse spermatogenesis. Endo T; Freinkman E; de Rooij DG; Page DC Proc Natl Acad Sci U S A; 2017 Nov; 114(47):E10132-E10141. PubMed ID: 29109271 [TBL] [Abstract][Full Text] [Related]
19. Molecular regulation of spermatogonial stem cell renewal and differentiation. Mäkelä JA; Hobbs RM Reproduction; 2019 Nov; 158(5):R169-R187. PubMed ID: 31247585 [TBL] [Abstract][Full Text] [Related]
20. SOX3 promotes generation of committed spermatogonia in postnatal mouse testes. McAninch D; Mäkelä JA; La HM; Hughes JN; Lovell-Badge R; Hobbs RM; Thomas PQ Sci Rep; 2020 Apr; 10(1):6751. PubMed ID: 32317665 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]