These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 29398719)

  • 1. Modeling and experimental studies of enhanced cooling by medical gauze for cell cryopreservation by vitrification.
    Zhang Y; Zhao G; Chapal Hossain SM; He X
    Int J Heat Mass Transf; 2017 Nov; 114():1-7. PubMed ID: 29398719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced heat transfer by medical gauze for cell vitrification with French straw.
    Tao S; Liu B
    Cryo Letters; 2023; 44(5):258-262. PubMed ID: 38032305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of heat transfer coefficients in plastic French straws plunged in liquid nitrogen.
    Santos MV; Sansinena M; Chirife J; Zaritzky N
    Cryobiology; 2014 Dec; 69(3):488-95. PubMed ID: 25445573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of external heat transfer coefficient during oocyte vitrification in liquid and slush nitrogen using numerical simulations to determine cooling rates.
    Santos MV; Sansinena M; Zaritzky N; Chirife J
    Cryo Letters; 2012; 33(1):31-40. PubMed ID: 22434120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of heat transfer in liquid and slush nitrogen by numerical simulation of cooling rates for French straws used for sperm cryopreservation.
    Sansinena M; Santos MV; Zaritzky N; Chirife J
    Theriogenology; 2012 May; 77(8):1717-21. PubMed ID: 22225685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical investigations of transient heat transfer characteristics and vitrification tendencies in ultra-fast cell cooling processes.
    Jiao A; Han X; Critser JK; Ma H
    Cryobiology; 2006 Jun; 52(3):386-92. PubMed ID: 16616118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical investigation into thermal effects of pre-cooling zone in vitrification-based cryopreservation process.
    Tsai HH; Tsai CH; Wu WT; Chen FZ; Chiang PJ
    Cryobiology; 2015 Feb; 70(1):32-7. PubMed ID: 25481669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulation of cooling rates in vitrification systems used for oocyte cryopreservation.
    Sansinena M; Santos MV; Zaritzky N; Chirife J
    Cryobiology; 2011 Aug; 63(1):32-7. PubMed ID: 21540134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryopreservation: Vitrification and Controlled Rate Cooling.
    Hunt CJ
    Methods Mol Biol; 2017; 1590():41-77. PubMed ID: 28353262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Throughput Non-Contact Vitrification of Cell-Laden Droplets Based on Cell Printing.
    Shi M; Ling K; Yong KW; Li Y; Feng S; Zhang X; Pingguan-Murphy B; Lu TJ; Xu F
    Sci Rep; 2015 Dec; 5():17928. PubMed ID: 26655688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigations on the heat transport capability of a cryogenic oscillating heat pipe and its application in achieving ultra-fast cooling rates for cell vitrification cryopreservation.
    Han X; Ma H; Jiao A; Critser JK
    Cryobiology; 2008 Jun; 56(3):195-203. PubMed ID: 18430413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Principles of cryopreservation.
    Pegg DE
    Methods Mol Biol; 2015; 1257():3-19. PubMed ID: 25428001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lower intracellular concentration of cryoprotectants after vitrification than after slow freezing despite exposure to higher concentration of cryoprotectant solutions.
    Vanderzwalmen P; Connan D; Grobet L; Wirleitner B; Remy B; Vanderzwalmen S; Zech N; Ectors FJ
    Hum Reprod; 2013 Aug; 28(8):2101-10. PubMed ID: 23592220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cryopreservation of animal and human embryos by vitrification.
    Kasai M; Mukaida T
    Reprod Biomed Online; 2004 Aug; 9(2):164-70. PubMed ID: 15333245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotransport phenomena in freezing mammalian oocytes.
    Yang G; Veres M; Szalai G; Zhang A; Xu LX; He X
    Ann Biomed Eng; 2011 Jan; 39(1):580-91. PubMed ID: 20848315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of cooling and warming rates in vitrification-based plant cryopreservation protocols.
    Teixeira AS; González-Benito ME; Molina-García AD
    Biotechnol Prog; 2014; 30(5):1177-84. PubMed ID: 24933257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent developments in human oocyte, embryo and blastocyst vitrification: where are we now?
    Liebermann J; Dietl J; Vanderzwalmen P; Tucker MJ
    Reprod Biomed Online; 2003 Dec; 7(6):623-33. PubMed ID: 14748959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alginate Hydrogel Microencapsulation Inhibits Devitrification and Enables Large-Volume Low-CPA Cell Vitrification.
    Huang H; Choi JK; Rao W; Zhao S; Agarwal P; Zhao G; He X
    Adv Funct Mater; 2015 Nov; 25(44):6939-6850. PubMed ID: 26640426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conduction Cooling and Plasmonic Heating Dramatically Increase Droplet Vitrification Volumes for Cell Cryopreservation.
    Zhan L; Guo SZ; Kangas J; Shao Q; Shiao M; Khosla K; Low WC; McAlpine MC; Bischof J
    Adv Sci (Weinh); 2021 Jun; 8(11):2004605. PubMed ID: 34141523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study on the relationship between the crystallization characteristics of quenched droplets and the effect of cell cryopreservation with Raman spectroscopy.
    Zhan T; Niu W; Cui M; Han H; Dang H; Guo N; Wang D; Hao Y; Zang C; Xu Y; Guo H
    Analyst; 2023 Jul; 148(14):3312-3320. PubMed ID: 37337775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.