BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 29399312)

  • 1. Near-Infrared Visual Differentiation in Normal and Abnormal Breast Using Hemoglobin Concentrations.
    Mehnati P; Khorram S; Zakerhamidi MS; Fahima F
    J Lasers Med Sci; 2018; 9(1):50-57. PubMed ID: 29399312
    [No Abstract]   [Full Text] [Related]  

  • 2. Assessing Absorption Coefficient of Hemoglobin in the Breast Phantom Using Near-Infrared Spectroscopy.
    Mehnati P; Jafari Tirtash M; Zakerhamidi MS; Mehnati P
    Iran J Radiol; 2016 Oct; 13(4):e31581. PubMed ID: 27895869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contrast-enhanced near-infrared laser mammography with a prototype breast scanner: feasibility study with tissue phantoms and preliminary results of imaging experimental tumors.
    Boehm T; Hochmuth A; Malich A; Reichenbach JR; Fleck M; Kaiser WA
    Invest Radiol; 2001 Oct; 36(10):573-81. PubMed ID: 11577267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial variations in optical and physiological properties of healthy breast tissue.
    Shah N; Cerussi AE; Jakubowski D; Hsiang D; Butler J; Tromberg BJ
    J Biomed Opt; 2004; 9(3):534-40. PubMed ID: 15189091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translation of a portable diffuse optical breast scanner probe for clinical application: a preliminary study.
    Shokoufi M; Haeri Z; Lim ZY; Ramaseshan R; Golnaraghi F
    Biomed Phys Eng Express; 2020 Feb; 6(1):015037. PubMed ID: 33438625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The clinical detection of breast cancer by spectrum method].
    Gao TX; Fan XF; Xuan LX; Zhang BN; Li X; Bai J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Nov; 28(11):2531-5. PubMed ID: 19271483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the chest wall on the measurement of hemoglobin concentrations by near-infrared time-resolved spectroscopy in normal breast and cancer.
    Yoshizawa N; Ueda Y; Nasu H; Ogura H; Ohmae E; Yoshimoto K; Takehara Y; Yamashita Y; Sakahara H
    Breast Cancer; 2016 Nov; 23(6):844-850. PubMed ID: 26474784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemoglobin plus myoglobin concentrations and near infrared light pathlength in phantom and pig hearts determined by diffuse reflectance spectroscopy.
    Gussakovsky E; Jilkina O; Yang Y; Kupriyanov V
    Anal Biochem; 2008 Nov; 382(2):107-15. PubMed ID: 18713616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-infrared imaging of the breast using omocianine as a fluorescent dye: results of a placebo-controlled, clinical, multicenter trial.
    Poellinger A; Persigehl T; Mahler M; Bahner M; Ponder SL; Diekmann F; Bremer C; Moesta T
    Invest Radiol; 2011 Nov; 46(11):697-704. PubMed ID: 21788905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and quantification of intrinsic optical contrast for near-infrared mammography.
    Quaresima V; Matcher SJ; Ferrari M
    Photochem Photobiol; 1998 Jan; 67(1):4-14. PubMed ID: 9477760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-infrared fluorescent dyes for enhanced contrast in optical mammography: phantom experiments.
    Ebert B; Sukowski U; Grosenick D; Wabnitz H; Moesta KT; Licha K; Becker A; Semmler W; Schlag PM; Rinneberg H
    J Biomed Opt; 2001 Apr; 6(2):134-40. PubMed ID: 11375722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of detection limits of a clinical fluorescence optical mammography system for the near-infrared fluorophore IRDye800CW: phantom experiments.
    Adams A; Mourik JE; van der Voort M; Pearlman PC; Nielsen T; Mali WP; Elias SG
    J Biomed Opt; 2012 Jul; 17(7):076022. PubMed ID: 22894505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-infrared optical mammography for breast cancer detection with intrinsic contrast.
    Fantini S; Sassaroli A
    Ann Biomed Eng; 2012 Feb; 40(2):398-407. PubMed ID: 21971964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of errors in experimental parameters on reconstructed breast images using diffuse optical tomography.
    Deng B; Lundqvist M; Fang Q; Carp SA
    Biomed Opt Express; 2018 Mar; 9(3):1130-1150. PubMed ID: 29541508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical imaging for breast cancer prescreening.
    Godavarty A; Rodriguez S; Jung YJ; Gonzalez S
    Breast Cancer (Dove Med Press); 2015; 7():193-209. PubMed ID: 26229503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multispectrum Indocyanine Green Videography for Visualizing Brain Vascular Pathology.
    Kamada K; Guger C; Takeuchi F
    World Neurosurg; 2019 Dec; 132():e545-e553. PubMed ID: 31442653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatically activated near infrared nanoprobes based on amphiphilic block copolymers for optical detection of cancer.
    Özel T; White S; Nguyen E; Moy A; Brenes N; Choi B; Betancourt T
    Lasers Surg Med; 2015 Sep; 47(7):579-594. PubMed ID: 26189505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy.
    Tromberg BJ; Cerussi A; Shah N; Compton M; Durkin A; Hsiang D; Butler J; Mehta R
    Breast Cancer Res; 2005; 7(6):279-85. PubMed ID: 16457705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative contributions of hemoglobin and myoglobin to near-infrared spectroscopic images of cardiac tissue.
    Nighswander-Rempel SP; Kupriyanov VV; Shaw RA
    Appl Spectrosc; 2005 Feb; 59(2):190-3. PubMed ID: 15720759
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.