These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29399379)

  • 21. Convergence of Catalytic Antibody and Terpene Cyclase Mechanisms: Polyene Cyclization Directed by Carbocation-π Interactions.
    Paschall CM; Hasserodt J; Jones T; Lerner RA; Janda KD; Christianson DW
    Angew Chem Int Ed Engl; 1999 Jun; 38(12):1743-1747. PubMed ID: 29711206
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Terpenoid biosynthesis off the beaten track: unconventional cyclases and their impact on biomimetic synthesis.
    Baunach M; Franke J; Hertweck C
    Angew Chem Int Ed Engl; 2015 Feb; 54(9):2604-26. PubMed ID: 25488271
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insights into taxadiene synthase catalysis and promiscuity facilitated by mutability landscape and molecular dynamics.
    He S; Abdallah II; van Merkerk R; Quax WJ
    Planta; 2024 Mar; 259(4):87. PubMed ID: 38460012
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Silent catalytic promiscuity in the high-fidelity terpene cyclase δ-cadinene synthase.
    Loizzi M; Miller DJ; Allemann RK
    Org Biomol Chem; 2019 Jan; 17(5):1206-1214. PubMed ID: 30652178
    [TBL] [Abstract][Full Text] [Related]  

  • 25. X-ray crystal structures of D100E trichodiene synthase and its pyrophosphate complex reveal the basis for terpene product diversity.
    Rynkiewicz MJ; Cane DE; Christianson DW
    Biochemistry; 2002 Feb; 41(6):1732-41. PubMed ID: 11827517
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catalytic control in terpenoid cyclases: multiscale modeling of thermodynamic, kinetic, and dynamic effects.
    Major DT; Freud Y; Weitman M
    Curr Opin Chem Biol; 2014 Aug; 21():25-33. PubMed ID: 24735749
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reprogramming the chemodiversity of terpenoid cyclization by remolding the active site contour of epi-isozizaene synthase.
    Li R; Chou WK; Himmelberger JA; Litwin KM; Harris GG; Cane DE; Christianson DW
    Biochemistry; 2014 Feb; 53(7):1155-68. PubMed ID: 24517311
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure of trichodiene synthase from Fusarium sporotrichioides provides mechanistic inferences on the terpene cyclization cascade.
    Rynkiewicz MJ; Cane DE; Christianson DW
    Proc Natl Acad Sci U S A; 2001 Nov; 98(24):13543-8. PubMed ID: 11698643
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular dynamics study of taxadiene synthase catalysis.
    Escorcia AM; van Rijn JPM; Cheng GJ; Schrepfer P; Brück TB; Thiel W
    J Comput Chem; 2018 Jul; 39(19):1215-1225. PubMed ID: 29450907
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physical constraints on sesquiterpene diversity arising from cyclization of the eudesm-5-yl carbocation.
    Hess BA; Smentek L; Noel JP; O'Maille PE
    J Am Chem Soc; 2011 Aug; 133(32):12632-41. PubMed ID: 21714557
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystal structure of F95Q epi-isozizaene synthase, an engineered sesquiterpene cyclase that generates biofuel precursors β- and γ-curcumene.
    Blank PN; Barrow GH; Christianson DW
    J Struct Biol; 2019 Aug; 207(2):218-224. PubMed ID: 31152775
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Delocalization of charge and electron density in the humulyl cation—implications for terpene biosynthesis.
    Hamlin TA; Hamann CS; Tantillo DJ
    J Org Chem; 2015 Apr; 80(8):4046-53. PubMed ID: 25822613
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of epi-isozizaene synthase from Streptomyces coelicolor A3(2), a platform for new terpenoid cyclization templates.
    Aaron JA; Lin X; Cane DE; Christianson DW
    Biochemistry; 2010 Mar; 49(8):1787-97. PubMed ID: 20131801
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probing of the plasticity of the active site in pinene synthase elucidates its potential evolutionary mechanism.
    Xu J; Peng G; Xu J; Li Y; Tong L; Yang D
    Phytochemistry; 2021 Jan; 181():112573. PubMed ID: 33142148
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Impression of a Nonexisting Catalytic Effect: The Role of CotB2 in Guiding the Complex Biosynthesis of Cyclooctat-9-en-7-ol.
    Raz K; Driller R; Dimos N; Ringel M; Brück T; Loll B; Major DT
    J Am Chem Soc; 2020 Dec; 142(51):21562-21574. PubMed ID: 33289561
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unearthing the roots of the terpenome.
    Christianson DW
    Curr Opin Chem Biol; 2008 Apr; 12(2):141-50. PubMed ID: 18249199
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Site-directed mutagenesis of β sesquiphellandrene synthase enhances enzyme promiscuity.
    Ker DS; Chan KG; Othman R; Hassan M; Ng CL
    Phytochemistry; 2020 May; 173():112286. PubMed ID: 32059132
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reprogramming the Cyclization Cascade of
    Eaton SA; Christianson DW
    Biochemistry; 2023 Aug; 62(15):2301-2313. PubMed ID: 37449555
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controlling Monoterpene Isomerization by Guiding Challenging Carbocation Rearrangement Reactions in Engineered Squalene-Hopene Cyclases.
    Ludwig J; Curado-Carballada C; Hammer SC; Schneider A; Diether S; Kress N; Ruiz-Barragán S; Osuna S; Hauer B
    Angew Chem Int Ed Engl; 2024 Mar; 63(12):e202318913. PubMed ID: 38270537
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Terpene synthases in disguise: enzymology, structure, and opportunities of non-canonical terpene synthases.
    Rudolf JD; Chang CY
    Nat Prod Rep; 2020 Mar; 37(3):425-463. PubMed ID: 31650156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.