These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 29399628)

  • 21. Microfluidic-Based Droplets for Advanced Regenerative Medicine: Current Challenges and Future Trends.
    Nazari H; Heirani-Tabasi A; Ghorbani S; Eyni H; Razavi Bazaz S; Khayati M; Gheidari F; Moradpour K; Kehtari M; Ahmadi Tafti SM; Ahmadi Tafti SH; Ebrahimi Warkiani M
    Biosensors (Basel); 2021 Dec; 12(1):. PubMed ID: 35049648
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of Microfiber-Templated Microfluidic Chips with Microfibrous Channels for High Throughput and Continuous Production of Nanoscale Droplets.
    Ahn GY; Choi I; Song M; Han SK; Choi K; Ryu YH; Oh DH; Kang HW; Choi SW
    ACS Macro Lett; 2022 Jan; 11(1):127-134. PubMed ID: 35574793
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Versatile Microfluidics for Biofabrication Platforms Enabled by an Agile and Inexpensive Fabrication Pipeline.
    Moetazedian A; Candeo A; Liu S; Hughes A; Nasrollahi V; Saadat M; Bassi A; Grover LM; Cox LR; Poologasundarampillai G
    Adv Healthc Mater; 2023 Oct; 12(26):e2300636. PubMed ID: 37186512
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation of Cancer Cells from Liquid Biopsies Using 3D-Printed Affinity Devices.
    Yang Y; Griffin K; Villareal S; Pappas D
    Methods Mol Biol; 2023; 2679():233-240. PubMed ID: 37300620
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-Throughput Fabrication of Size-Controlled Pickering Emulsions, Colloidosomes, and Air-Coated Particles via Clog-Free Jetting of Suspensions.
    Jiang J; Poortinga AT; Liao Y; Kamperman T; Venner CH; Visser CW
    Adv Mater; 2023 Mar; 35(13):e2208894. PubMed ID: 36626724
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The manufacturing of 3D-printed microfluidic chips to analyse the effect upon particle size during the synthesis of lipid nanoparticles.
    Weaver E; Mathew E; Caldwell J; Hooker A; Uddin S; Lamprou DA
    J Pharm Pharmacol; 2023 Feb; 75(2):245-252. PubMed ID: 36453867
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-Throughput Production of Micrometer Sized Double Emulsions and Microgel Capsules in Parallelized 3D Printed Microfluidic Devices.
    Jans A; Lölsberg J; Omidinia-Anarkoli A; Viermann R; Möller M; De Laporte L; Wessling M; Kuehne AJC
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31731709
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Rapid generation of double-layer emulsion droplets based on microfluidic chip].
    Bai L; Yuan H; Tu R; Wang Q; Hua E
    Sheng Wu Gong Cheng Xue Bao; 2020 Jul; 36(7):1405-1413. PubMed ID: 32748598
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation and comparison of resin materials in transparent DLP-printing for application in cell culture and organs-on-a-chip.
    Fritschen A; Bell AK; Königstein I; Stühn L; Stark RW; Blaeser A
    Biomater Sci; 2022 Apr; 10(8):1981-1994. PubMed ID: 35262097
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Modular Microfluidic Device via Multimaterial 3D Printing for Emulsion Generation.
    Ji Q; Zhang JM; Liu Y; Li X; Lv P; Jin D; Duan H
    Sci Rep; 2018 Mar; 8(1):4791. PubMed ID: 29556013
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accessing microfluidics through feature-based design software for 3D printing.
    Shankles PG; Millet LJ; Aufrecht JA; Retterer ST
    PLoS One; 2018; 13(3):e0192752. PubMed ID: 29596418
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Droplet microfluidic technology for single-cell high-throughput screening.
    Brouzes E; Medkova M; Savenelli N; Marran D; Twardowski M; Hutchison JB; Rothberg JM; Link DR; Perrimon N; Samuels ML
    Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14195-200. PubMed ID: 19617544
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrahigh-Throughput Production of Monodisperse and Multifunctional Janus Microparticles Using in-Air Microfluidics.
    Kamperman T; Trikalitis VD; Karperien M; Visser CW; Leijten J
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23433-23438. PubMed ID: 29952552
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds.
    Felton H; Hughes R; Diaz-Gaxiola A
    PLoS One; 2021; 16(2):e0245206. PubMed ID: 33534849
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Printed droplet microfluidics for on demand dispensing of picoliter droplets and cells.
    Cole RH; Tang SY; Siltanen CA; Shahi P; Zhang JQ; Poust S; Gartner ZJ; Abate AR
    Proc Natl Acad Sci U S A; 2017 Aug; 114(33):8728-8733. PubMed ID: 28760972
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent progress in the synthesis of all-aqueous two-phase droplets using microfluidic approaches.
    Daradmare S; Lee CS
    Colloids Surf B Biointerfaces; 2022 Nov; 219():112795. PubMed ID: 36049253
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microfluidic bioprinting for organ-on-a-chip models.
    Yu F; Choudhury D
    Drug Discov Today; 2019 Jun; 24(6):1248-1257. PubMed ID: 30940562
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic fabrication of water-in-water (w/w) jets and emulsions.
    Cheung Shum H; Varnell J; Weitz DA
    Biomicrofluidics; 2012 Mar; 6(1):12808-128089. PubMed ID: 22662075
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidics-Enabled Soft Manufacture of Materials with Tailorable Wettability.
    Zhu P; Wang L
    Chem Rev; 2022 Apr; 122(7):7010-7060. PubMed ID: 34918913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High throughput production of microcapsules using microfluidics for self-healing of cementitious materials.
    Ribeiro de Souza L; Al-Tabbaa A
    Lab Chip; 2021 Nov; 21(23):4652-4659. PubMed ID: 34734612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.