BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 29399725)

  • 1. POTENCI: prediction of temperature, neighbor and pH-corrected chemical shifts for intrinsically disordered proteins.
    Nielsen JT; Mulder FAA
    J Biomol NMR; 2018 Mar; 70(3):141-165. PubMed ID: 29399725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CheSPI: chemical shift secondary structure population inference.
    Nielsen JT; Mulder FAA
    J Biomol NMR; 2021 Jul; 75(6-7):273-291. PubMed ID: 34146207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Nearest-Neighbor Effect on Random-Coil NMR Chemical Shifts Demonstrated Using a Low-Complexity Amino-Acid Sequence.
    Chen TC; Hsiao CL; Huang SJ; Huang JR
    Protein Pept Lett; 2016; 23(11):967-975. PubMed ID: 27653629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Random coil chemical shifts for serine, threonine and tyrosine phosphorylation over a broad pH range.
    Hendus-Altenburger R; Fernandes CB; Bugge K; Kunze MBA; Boomsma W; Kragelund BB
    J Biomol NMR; 2019 Dec; 73(12):713-725. PubMed ID: 31598803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Protein Disorder Assessment Using NMR Chemical Shifts.
    Nielsen JT; Mulder FAA
    Methods Mol Biol; 2020; 2141():303-317. PubMed ID: 32696364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of nearest neighbor effects on backbone torsion angles and NMR scalar coupling constants in disordered proteins.
    Shen Y; Roche J; Grishaev A; Bax A
    Protein Sci; 2018 Jan; 27(1):146-158. PubMed ID: 28884933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH.
    Kjaergaard M; Brander S; Poulsen FM
    J Biomol NMR; 2011 Feb; 49(2):139-49. PubMed ID: 21234644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A six-dimensional alpha proton detection-based APSY experiment for backbone assignment of intrinsically disordered proteins.
    Yao X; Becker S; Zweckstetter M
    J Biomol NMR; 2014 Dec; 60(4):231-40. PubMed ID: 25367087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction and comparison of the statistical coil states of unfolded and intrinsically disordered proteins from nearest-neighbor corrected conformational propensities of short peptides.
    Schweitzer-Stenner R; Toal SE
    Mol Biosyst; 2016 Oct; 12(11):3294-3306. PubMed ID: 27545097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using NMR Chemical Shifts to Determine Residue-Specific Secondary Structure Populations for Intrinsically Disordered Proteins.
    Borcherds WM; Daughdrill GW
    Methods Enzymol; 2018; 611():101-136. PubMed ID: 30471686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nearest-neighbor effects on backbone alpha and beta carbon chemical shifts in proteins.
    Wang L; Eghbalnia HR; Markley JL
    J Biomol NMR; 2007 Nov; 39(3):247-57. PubMed ID: 17899393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational propensities of intrinsically disordered proteins from NMR chemical shifts.
    Kragelj J; Ozenne V; Blackledge M; Jensen MR
    Chemphyschem; 2013 Sep; 14(13):3034-45. PubMed ID: 23794453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid recognition for automatic resonance assignment of intrinsically disordered proteins.
    Piai A; Gonnelli L; Felli IC; Pierattelli R; Kazimierczuk K; Grudziąż K; Koźmiński W; Zawadzka-Kazimierczuk A
    J Biomol NMR; 2016 Mar; 64(3):239-53. PubMed ID: 26891900
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Murrali MG; Schiavina M; Sainati V; Bermel W; Pierattelli R; Felli IC
    J Biomol NMR; 2018 Mar; 70(3):167-175. PubMed ID: 29492731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neighboring residue effects in terminally blocked dipeptides: implications for residual secondary structures in intrinsically unfolded/disordered proteins.
    Jung YS; Oh KI; Hwang GS; Cho M
    Chirality; 2014 Sep; 26(9):443-52. PubMed ID: 24453185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A CON-based NMR assignment strategy for pro-rich intrinsically disordered proteins with low signal dispersion: the C-terminal domain of histone H1.0 as a case study.
    Chaves-Arquero B; Pantoja-Uceda D; Roque A; Ponte I; Suau P; Jiménez MA
    J Biomol NMR; 2018 Dec; 72(3-4):139-148. PubMed ID: 30414042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum Chemical Calculations of NMR Chemical Shifts in Phosphorylated Intrinsically Disordered Proteins.
    Pavlíková Přecechtělová J; Mládek A; Zapletal V; Hritz J
    J Chem Theory Comput; 2019 Oct; 15(10):5642-5658. PubMed ID: 31487161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution.
    Kjaergaard M; Poulsen FM
    J Biomol NMR; 2011 Jun; 50(2):157-65. PubMed ID: 21604143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Use of
    Cook EC; Usher GA; Showalter SA
    Methods Enzymol; 2018; 611():81-100. PubMed ID: 30471706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ensemble Calculation for Intrinsically Disordered Proteins Using NMR Parameters.
    Kragelj J; Blackledge M; Jensen MR
    Adv Exp Med Biol; 2015; 870():123-47. PubMed ID: 26387101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.