BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 29399725)

  • 21. DSHIFT: a web server for predicting DNA chemical shifts.
    Lam SL
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W713-7. PubMed ID: 17517771
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sequence-specific random coil chemical shifts of intrinsically disordered proteins.
    Tamiola K; Acar B; Mulder FA
    J Am Chem Soc; 2010 Dec; 132(51):18000-3. PubMed ID: 21128621
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The s2D method: simultaneous sequence-based prediction of the statistical populations of ordered and disordered regions in proteins.
    Sormanni P; Camilloni C; Fariselli P; Vendruscolo M
    J Mol Biol; 2015 Feb; 427(4):982-996. PubMed ID: 25534081
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct correlation of consecutive C'-N groups in proteins: a method for the assignment of intrinsically disordered proteins.
    Pantoja-Uceda D; Santoro J
    J Biomol NMR; 2013 Sep; 57(1):57-63. PubMed ID: 23929272
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The C-terminal domain of eukaryotic acidic ribosomal P2 proteins is intrinsically disordered with conserved structural propensities.
    Mishra P; Rajagopal S; Sharma S; Hosur RV
    Protein Pept Lett; 2014; 22(3):212-8. PubMed ID: 25412900
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nuclear Magnetic Resonance-Guided Structural Analysis of Moderate-Affinity Protein Complexes with Intrinsically Disordered Polypeptides.
    Tolkatchev D; Smith GE; Kostyukova AS
    Methods Mol Biol; 2023; 2652():405-437. PubMed ID: 37093489
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probabilistic approach to determining unbiased random-coil carbon-13 chemical shift values from the protein chemical shift database.
    Wang L; Eghbalnia HR; Markley JL
    J Biomol NMR; 2006 Jul; 35(3):155-65. PubMed ID: 16799859
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Easy and unambiguous sequential assignments of intrinsically disordered proteins by correlating the backbone 15N or 13C' chemical shifts of multiple contiguous residues in highly resolved 3D spectra.
    Yoshimura Y; Kulminskaya NV; Mulder FA
    J Biomol NMR; 2015 Feb; 61(2):109-21. PubMed ID: 25577242
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accurately Predicting Disordered Regions of Proteins Using Rosetta ResidueDisorder Application.
    Kim SS; Seffernick JT; Lindert S
    J Phys Chem B; 2018 Apr; 122(14):3920-3930. PubMed ID: 29595057
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Triple resonance ¹⁵Ν NMR relaxation experiments for studies of intrinsically disordered proteins.
    Srb P; Nováček J; Kadeřávek P; Rabatinová A; Krásný L; Žídková J; Bobálová J; Sklenář V; Žídek L
    J Biomol NMR; 2017 Nov; 69(3):133-146. PubMed ID: 29071460
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved validation of IDP ensembles by one-bond Cα-Hα scalar couplings.
    Gapsys V; Narayanan RL; Xiang S; de Groot BL; Zweckstetter M
    J Biomol NMR; 2015 Nov; 63(3):299-307. PubMed ID: 26433382
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dispersion from C
    Tossavainen H; Salovaara S; Hellman M; Ihalin R; Permi P
    J Biomol NMR; 2020 Mar; 74(2-3):147-159. PubMed ID: 31932991
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The PROSECCO server for chemical shift predictions in ordered and disordered proteins.
    Sanz-Hernández M; De Simone A
    J Biomol NMR; 2017 Nov; 69(3):147-156. PubMed ID: 29119515
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New force field on modeling intrinsically disordered proteins.
    Wang W; Ye W; Jiang C; Luo R; Chen HF
    Chem Biol Drug Des; 2014 Sep; 84(3):253-69. PubMed ID: 24589355
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NMR Lineshape Analysis of Intrinsically Disordered Protein Interactions.
    Waudby CA; Christodoulou J
    Methods Mol Biol; 2020; 2141():477-504. PubMed ID: 32696373
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using
    Okazaki H; Matsuo N; Tenno T; Goda N; Shigemitsu Y; Ota M; Hiroaki H
    Protein Sci; 2018 Oct; 27(10):1821-1830. PubMed ID: 30098073
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure and Dynamics of an Intrinsically Disordered Protein Region That Partially Folds upon Binding by Chemical-Exchange NMR.
    Charlier C; Bouvignies G; Pelupessy P; Walrant A; Marquant R; Kozlov M; De Ioannes P; Bolik-Coulon N; Sagan S; Cortes P; Aggarwal AK; Carlier L; Ferrage F
    J Am Chem Soc; 2017 Sep; 139(35):12219-12227. PubMed ID: 28780862
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using chemical shifts to assess transient secondary structure and generate ensemble structures of intrinsically disordered proteins.
    Kashtanov S; Borcherds W; Wu H; Daughdrill GW; Ytreberg FM
    Methods Mol Biol; 2012; 895():139-52. PubMed ID: 22760318
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Six- and seven-dimensional experiments by combination of sparse random sampling and projection spectroscopy dedicated for backbone resonance assignment of intrinsically disordered proteins.
    Żerko S; Koźmiński W
    J Biomol NMR; 2015 Nov; 63(3):283-90. PubMed ID: 26403428
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Describing intrinsically disordered proteins at atomic resolution by NMR.
    Jensen MR; Ruigrok RW; Blackledge M
    Curr Opin Struct Biol; 2013 Jun; 23(3):426-35. PubMed ID: 23545493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.