These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 29399932)

  • 1. Size-Dependent Phase Separation in Emulsion Droplets.
    Man J; Chien S; Liang S; Li J; Chen H
    Chemphyschem; 2018 Aug; 19(16):1995-1998. PubMed ID: 29399932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mass-Transfer-Induced Multistep Phase Separation in Emulsion Droplets: Toward Self-Assembly Multilayered Emulsions and Onionlike Microspheres.
    Liang S; Li J; Man J; Chen H
    Langmuir; 2016 Aug; 32(31):7882-7. PubMed ID: 27427849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex emulsions for shape control based on mass transfer and phase separation.
    Zhang F; Jiang L; Zeng C; Wang C; Wang J; Ke X; Zhang L
    Soft Matter; 2020 Jul; 16(25):5981-5989. PubMed ID: 32543634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Multi-Layered Microspheres Based on Phase Separation for Drug Delivery.
    Xia H; Li A; Man J; Li J; Li J
    Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34205458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Giant biocompatible and biodegradable PEG-PMCL vesicles and microcapsules by solvent evaporation from double emulsion droplets.
    Foster T; Dorfman KD; Davis HT
    J Colloid Interface Sci; 2010 Nov; 351(1):140-50. PubMed ID: 20627256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex Suspended Janus Droplets Constructed through Solvent Evaporation-Induced Phase Separation at the Air-Liquid Interface.
    Hua Z; Man J; Liu G; Li J; Zhou C; Xia H; Li J
    Langmuir; 2022 Sep; 38(36):10994-11002. PubMed ID: 36048165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile Microfluidic Fabrication of Biocompatible Hydrogel Microspheres in a Novel Microfluidic Device.
    Chen M; Aluunmani R; Bolognesi G; Vladisavljević GT
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of uniform monomer droplets using packed column and continuous polymerization in tube reactor.
    Yasuda M; Goda T; Ogino H; Glomm WR; Takayanagi H
    J Colloid Interface Sci; 2010 Sep; 349(1):392-401. PubMed ID: 20566203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of Poly(methylmethacrylate) Microcapsules with Liquid Cores.
    Loxley A; Vincent B
    J Colloid Interface Sci; 1998 Dec; 208(1):49-62. PubMed ID: 9820748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of uniform-sized PLA microcapsules by combining Shirasu porous glass membrane emulsification technique and multiple emulsion-solvent evaporation method.
    Liu R; Ma G; Meng FT; Su ZG
    J Control Release; 2005 Mar; 103(1):31-43. PubMed ID: 15710498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development in modeling submicron particle formation in two phases flow of solvent-supercritical antisolvent emulsion.
    Dukhin SS; Shen Y; Dave R; Pfeffer R
    Adv Colloid Interface Sci; 2007 Oct; 134-135():72-88. PubMed ID: 17568550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacially-mediated oxygen inhibition for precise and continuous poly(ethylene glycol) diacrylate (PEGDA) particle fabrication.
    Debroy D; Oakey J; Li D
    J Colloid Interface Sci; 2018 Jan; 510():334-344. PubMed ID: 28961432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated microfluidic system with simultaneous emulsion generation and concentration.
    Koppula KS; Fan R; Veerapalli KR; Wan J
    J Colloid Interface Sci; 2016 Mar; 466():162-7. PubMed ID: 26722797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of process parameters on the size distribution of PLA microcapsules prepared by combining membrane emulsification technique and double emulsion-solvent evaporation method.
    Liu R; Ma GH; Wan YH; Su ZG
    Colloids Surf B Biointerfaces; 2005 Nov; 45(3-4):144-53. PubMed ID: 16198091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behaviour of whey protein emulsion gel during oral and gastric digestion: effect of droplet size.
    Guo Q; Ye A; Lad M; Dalgleish D; Singh H
    Soft Matter; 2014 Jun; 10(23):4173-83. PubMed ID: 24763731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emulsion templating of poly(lactic acid) particles: droplet formation behavior.
    Vladisavljević GT; Duncanson WJ; Shum HC; Weitz DA
    Langmuir; 2012 Sep; 28(36):12948-54. PubMed ID: 22860633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multicompartmental Janus microbeads from branched polymers by single-emulsion droplet microfluidics.
    Chen Y; Nurumbetov G; Chen R; Ballard N; Bon SA
    Langmuir; 2013 Oct; 29(41):12657-62. PubMed ID: 24040786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system.
    Tan YC; Lee AP
    Lab Chip; 2005 Oct; 5(10):1178-83. PubMed ID: 16175277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of water-containing polymer microcapsules by the complex emulsion/solvent evaporation technique. Effect of process variables on the microcapsule size distribution.
    Kentepozidou A; Kiparissides C
    J Microencapsul; 1995; 12(6):627-38. PubMed ID: 8558385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible fabrication of lipophilic-hydrophilic micromotors by off-chip photopolymerization of three-phase immiscible flow induced Janus droplet templates.
    Zhang K; Ren Y; Jiang T; Jiang H
    Anal Chim Acta; 2021 Oct; 1182():338955. PubMed ID: 34602209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.