These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 29400744)

  • 41. Electronically and rapidly tunable fiber-integrable optical parametric oscillator for nonlinear microscopy.
    Brinkmann M; Janfrüchte S; Hellwig T; Dobner S; Fallnich C
    Opt Lett; 2016 May; 41(10):2193-6. PubMed ID: 27176960
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Online autofluorescence measurements during selective RPE laser treatment.
    Framme C; Schüle G; Roider J; Birngruber R; Brinkmann R
    Graefes Arch Clin Exp Ophthalmol; 2004 Oct; 242(10):863-9. PubMed ID: 15221301
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Simultaneous generation of sub-5-femtosecond 400  nm and 800  nm pulses for attosecond extreme ultraviolet pump-probe spectroscopy.
    Chang HT; Zürch M; Kraus PM; Borja LJ; Neumark DM; Leone SR
    Opt Lett; 2016 Nov; 41(22):5365-5368. PubMed ID: 27842133
    [TBL] [Abstract][Full Text] [Related]  

  • 44. All-optical wavelength conversion based on time-domain holography.
    Fernández-Ruiz MR; Lei L; Rochette M; Azaña J
    Opt Express; 2015 Aug; 23(17):22847-56. PubMed ID: 26368252
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Simultaneous time and wavelength resolved spectroscopy under two-colour near infrared and terahertz excitation.
    Bhattacharyya J; Wagner M; Zybell S; Winnerl S; Stehr D; Helm M; Schneider H
    Rev Sci Instrum; 2011 Oct; 82(10):103107. PubMed ID: 22047280
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A versatile and reconfigurable setup for all-terahertz time-resolved pump-probe spectroscopy.
    Elezzabi AY; Maraghechi P
    Rev Sci Instrum; 2012 May; 83(5):053107. PubMed ID: 22667602
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optimized protocol of a frequency domain fluorescence lifetime imaging microscope for FRET measurements.
    Leray A; Riquet FB; Richard E; Spriet C; Trinel D; Héliot L
    Microsc Res Tech; 2009 May; 72(5):371-9. PubMed ID: 19084885
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multi-target spectrally resolved fluorescence lifetime imaging microscopy.
    Niehörster T; Löschberger A; Gregor I; Krämer B; Rahn HJ; Patting M; Koberling F; Enderlein J; Sauer M
    Nat Methods; 2016 Mar; 13(3):257-62. PubMed ID: 26808668
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Investigation of signal-to-noise ratio in frequency-domain multiphoton fluorescence lifetime imaging microscopy.
    Zhang Y; Khan AA; Vigil GD; Howard SS
    J Opt Soc Am A Opt Image Sci Vis; 2016 Jul; 33(7):B1-B11. PubMed ID: 27409702
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Two-photon lifetime imaging of fluorescent probes in intact blood vessels: a window to sub-cellular structural information and binding status.
    Douma K; Megens RT; Reitsma S; Prinzen L; Slaaf DW; Van Zandvoort MA
    Microsc Res Tech; 2007 May; 70(5):467-75. PubMed ID: 17393531
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optimizing frequency-domain fluorescence lifetime sensing for high-throughput applications: photon economy and acquisition speed.
    Esposito A; Gerritsen HC; Wouters FS
    J Opt Soc Am A Opt Image Sci Vis; 2007 Oct; 24(10):3261-73. PubMed ID: 17912319
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Time-resolved pump-probe system based on a nonlinear imaging technique with phase object.
    Li Y; Pan G; Yang K; Zhang X; Wang Y; Wei TH; Song Y
    Opt Express; 2008 Apr; 16(9):6251-9. PubMed ID: 18545328
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Antecedents of two-photon excitation laser scanning microscopy.
    Masters BR; So PT
    Microsc Res Tech; 2004 Jan; 63(1):3-11. PubMed ID: 14677127
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multiphoton excitation of autofluorescence for microscopy of glioma tissue.
    Leppert J; Krajewski J; Kantelhardt SR; Schlaffer S; Petkus N; Reusche E; Hüttmann G; Giese A
    Neurosurgery; 2006 Apr; 58(4):759-67; discussion 759-67. PubMed ID: 16575340
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High resolution cellular imaging with nonlinear optical infrared microscopy.
    Lee ES; Lee JY
    Opt Express; 2011 Jan; 19(2):1378-84. PubMed ID: 21263679
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Time-resolved fluorescence microscopy.
    Suhling K; French PM; Phillips D
    Photochem Photobiol Sci; 2005 Jan; 4(1):13-22. PubMed ID: 15616687
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Two-photon excitation and stimulated emission depletion by a single wavelength.
    Scheul T; D'Amico C; Wang I; Vial JC
    Opt Express; 2011 Sep; 19(19):18036-48. PubMed ID: 21935169
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Excited state absorption dynamics in metal cluster polymer [WS4Cu3I(4-bpy)3]n solution.
    Yang J; Gu J; Song Y; Guang S; Wang Y; Zhang W; Lang J
    J Phys Chem B; 2007 Jul; 111(28):7987-93. PubMed ID: 17590038
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Line-scanning microscopy for time-gated and spectrally resolved fluorescence imaging.
    Nakamura R; Izumi Y; Kajiyama S; Kobayashi A; Kanematsu Y
    J Biol Phys; 2008 Apr; 34(1-2):51-62. PubMed ID: 19669492
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Super-Multiplex Nonlinear Optical Imaging Unscrambles the Statistical Complexity of Cancer Subtypes and Tumor Microenvironment.
    Li Y; Shen B; Zou G; Hu R; Pan Y; Qu J; Liu L
    Adv Sci (Weinh); 2022 Feb; 9(5):e2104379. PubMed ID: 34927370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.