These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 29400822)

  • 1. Ultraslow long-living plasmons with electromagnetically induced transparency.
    Ziemkiewicz D; Słowik K; Zielińska-Raczyńska S
    Opt Lett; 2018 Feb; 43(3):490-493. PubMed ID: 29400822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal nanoparticle plasmons operating within a quantum lifetime.
    Taşgın ME
    Nanoscale; 2013 Sep; 5(18):8616-24. PubMed ID: 23897124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon-induced transparency by detuned magnetic atoms in trirod metamaterials.
    Ding P; Fan C; Cheng Y; Liang E; Xue Q
    Appl Opt; 2012 Apr; 51(12):1879-85. PubMed ID: 22534892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance.
    Lu Y; Rhee JY; Jang WH; Lee YP
    Opt Express; 2010 Sep; 18(20):20912-7. PubMed ID: 20940986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gain-assisted propagation of surface plasmon polaritons via electrically pumped quantum wells.
    Zhang X; Li Y; Li T; Lee SY; Feng C; Wang L; Mei T
    Opt Lett; 2010 Sep; 35(18):3075-7. PubMed ID: 20847783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localized surface plasmons, surface plasmon polaritons, and their coupling in 2D metallic array for SERS.
    Du L; Zhang X; Mei T; Yuan X
    Opt Express; 2010 Feb; 18(3):1959-65. PubMed ID: 20174025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexibly tunable high-quality-factor induced transparency in plasmonic systems.
    Lu H; Gan X; Mao D; Jia B; Zhao J
    Sci Rep; 2018 Jan; 8(1):1558. PubMed ID: 29367609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electromagnetically induced transparency of a plasmonic metamaterial light absorber based on multilayered metallic nanoparticle sheets.
    Okamoto K; Tanaka D; Degawa R; Li X; Wang P; Ryuzaki S; Tamada K
    Sci Rep; 2016 Nov; 6():36165. PubMed ID: 27824071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromagnetically induced transparency and ultraslow optical solitons in a coherent atomic gas filled in a slot waveguide.
    Xu J; Huang G
    Opt Express; 2013 Feb; 21(4):5149-63. PubMed ID: 23482049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-coupled plasmon-induced transparency.
    Kekatpure RD; Barnard ES; Cai W; Brongersma ML
    Phys Rev Lett; 2010 Jun; 104(24):243902. PubMed ID: 20867303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear frequency conversions via weak surface polaritonic wave breaking in a hybrid plasmonic waveguide.
    Asgarnezhad-Zorgabad S; Sanders BC
    Opt Lett; 2020 Oct; 45(19):5432-5435. PubMed ID: 33001912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double plasmonic nanodisks design for electromagnetically induced transparency and slow light.
    Lai G; Liang R; Zhang Y; Bian Z; Yi L; Zhan G; Zhao R
    Opt Express; 2015 Mar; 23(5):6554-61. PubMed ID: 25836873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic EIT-like switching in bright-dark-bright plasmon resonators.
    Chen J; Wang P; Chen C; Lu Y; Ming H; Zhan Q
    Opt Express; 2011 Mar; 19(7):5970-8. PubMed ID: 21451622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of localized surface plasmons and hybridized surface plasmon polaritons on self-assembled two-dimensional nanocavities.
    Xiong Q; Wei J; Mahpeykar SM; Meng L; Wang X
    Opt Lett; 2016 Apr; 41(7):1506-9. PubMed ID: 27192273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of a nanotip on a surface for the ultrafast probing of propagating surface plasmons.
    Ahn B; Schötz J; Okell WA; Süßmann F; Förg B; Kim SC; Kling MF; Kim D
    Opt Express; 2016 Jan; 24(1):92-101. PubMed ID: 26832240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic electromagnetically-induced transparency in symmetric structures.
    Jin X; Lu Y; Zheng H; Lee Y; Rhee JY; Jang WH
    Opt Express; 2010 Jun; 18(13):13396-401. PubMed ID: 20588469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active Enhancement of Slow Light Based on Plasmon-Induced Transparency with Gain Materials.
    Zhang Z; Yang J; He X; Han Y; Zhang J; Huang J; Chen D; Xu S
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29865283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarized linewidth-controllable double-trapping electromagnetically induced transparency spectra in a resonant plasmon nanocavity.
    Wang L; Gu Y; Chen H; Zhang JY; Cui Y; Gerardot BD; Gong Q
    Sci Rep; 2013 Oct; 3():2879. PubMed ID: 24096943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling of multiple LSP and SPP resonances: interactions between an elongated nanoparticle and a thin metallic film.
    Farhang A; Bigler N; Martin OJ
    Opt Lett; 2013 Nov; 38(22):4758-61. PubMed ID: 24322125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of electromagnetically induced transparency in metamaterials.
    Xu H; Lu Y; Lee Y; Ham BS
    Opt Express; 2010 Aug; 18(17):17736-47. PubMed ID: 20721160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.