These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 29400859)

  • 1. Tamm-plasmon polaritons in one-dimensional photonic quasi-crystals.
    Shukla MK; Das R
    Opt Lett; 2018 Feb; 43(3):362-365. PubMed ID: 29400859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Tamm Plasmon Polaritons and Cavity Modes for Biosensing in the Combined Spectroscopic Ellipsometry and Quartz Crystal Microbalance Method.
    Plikusienė I; Bužavaitė-Vertelienė E; Mačiulis V; Valavičius A; Ramanavičienė A; Balevičius Z
    Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-range propagation of plasmon polaritons in a thin metal film on a one-dimensional photonic crystal surface.
    Konopsky VN; Alieva EV
    Phys Rev Lett; 2006 Dec; 97(25):253904. PubMed ID: 17280356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybridization of Surface Plasmon Polariton and Photonic Crystal Modes in Bragg Mirror with Periodically Profiled Metal Film.
    Sosnova MV; Mamykin SV; Korovin AV; Dmitruk NL
    Nanoscale Res Lett; 2016 Dec; 11(1):144. PubMed ID: 26979722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zak phase and topological plasmonic Tamm states in one-dimensional plasmonic crystals.
    Wang L; Cai W; Bie M; Zhang X; Xu J
    Opt Express; 2018 Oct; 26(22):28963-28975. PubMed ID: 30470065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced nonlinear optical effects due to the excitation of optical Tamm plasmon polaritons in one-dimensional photonic crystal structures.
    Lee KJ; Wu JW; Kim K
    Opt Express; 2013 Nov; 21(23):28817-23. PubMed ID: 24514394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photonic Quasi-Crystal Fiber-Based Plasmonic Biosensor: a Platform for Detection of Coronavirus.
    Aliee M; Mozaffari MH
    Plasmonics; 2022; 17(4):1655-1660. PubMed ID: 35529602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulation of photons at the surface of three-dimensional photonic crystals.
    Ishizaki K; Noda S
    Nature; 2009 Jul; 460(7253):367-70. PubMed ID: 19606144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient third-harmonic generation based on Tamm plasmon polaritons.
    Xue CH; Jiang HT; Lu H; Du GQ; Chen H
    Opt Lett; 2013 Mar; 38(6):959-61. PubMed ID: 23503273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons.
    Rahman SS; Klein T; Klembt S; Gutowski J; Hommel D; Sebald K
    Sci Rep; 2016 Oct; 6():34392. PubMed ID: 27698359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tamm-plasmon and surface-plasmon hybrid-mode based refractometry in photonic bandgap structures.
    Das R; Srivastava T; Jha R
    Opt Lett; 2014 Feb; 39(4):896-9. PubMed ID: 24562235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppressing the radiation loss by hybrid Tamm-surface plasmon BIC modes.
    Qiao T; Hu M; Wang Q; Xiao M; Zhu S; Liu H
    Opt Express; 2024 Jun; 32(12):21497-21505. PubMed ID: 38859502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasi-isotropic surface plasmon polariton generation through near-field coupling to a penrose pattern of silver nanoparticles.
    Verre R; Antosiewicz TJ; Svedendahl M; Lodewijks K; Shegai T; Käll M
    ACS Nano; 2014 Sep; 8(9):9286-94. PubMed ID: 25182843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exciton polaritons in one-dimensional metal-semiconductor photonic crystals.
    Márquez-Islas R; Flores-Desirena B; Pérez-Rodríguez F
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6584-8. PubMed ID: 19205244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing resonant photon tunneling via cavity modes and Tamm plasmon polariton modes in metal-coated Bragg mirrors.
    Leosson K; Shayestehaminzadeh S; Tryggvason TK; Kossoy A; Agnarsson B; Magnus F; Olafsson S; Gudmundsson JT; Magnusson EB; Shelykh IA
    Opt Lett; 2012 Oct; 37(19):4026-8. PubMed ID: 23027267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of surface plasmon polaritons near the photonic-bandgap edge for interphotonic band switching devices.
    Onuki T; Ohtera Y; Tokizaki T
    J Microsc; 2008 Mar; 229(Pt 3):447-51. PubMed ID: 18331493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid Tamm and quasi-BIC microcavity modes.
    Buzin DS; Pankin PS; Maksimov DN; Romanenko GA; Sutormin VS; Nabol SV; Zelenov FV; Masyugin AN; Volochaev MN; Vetrov SY; Timofeev IV
    Nanoscale; 2023 Oct; 15(41):16706-16714. PubMed ID: 37796019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of Zak phase by reflection phase in 1D photonic crystals.
    Gao WS; Xiao M; Chan CT; Tam WY
    Opt Lett; 2015 Nov; 40(22):5259-62. PubMed ID: 26565849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wide-angle Spectrally Selective Perfect Absorber by Utilizing Dispersionless Tamm Plasmon Polaritons.
    Xue CH; Wu F; Jiang HT; Li Y; Zhang YW; Chen H
    Sci Rep; 2016 Dec; 6():39418. PubMed ID: 27991565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topological photonics by breaking the degeneracy of line node singularities in semimetal-like photonic crystals.
    Börm S; Davoodi F; Köhl R; Talebi N
    Opt Express; 2022 Nov; 30(23):42649-42662. PubMed ID: 36366715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.