These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 29400955)

  • 61. Strong Purcell enhancement at telecom wavelengths afforded by spinel Fe
    Dolgopolova EA; Li D; Hartman ST; Watt J; Ríos C; Hu J; Kukkadapu R; Casson J; Bose R; Malko AV; Blake AV; Ivanov S; Roslyak O; Piryatinski A; Htoon H; Chen HT; Pilania G; Hollingsworth JA
    Nanoscale Horiz; 2022 Feb; 7(3):267-275. PubMed ID: 34908075
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Phosphorus-doped silicon nanocrystals exhibiting mid-infrared localized surface plasmon resonance.
    Rowe DJ; Jeong JS; Mkhoyan KA; Kortshagen UR
    Nano Lett; 2013 Mar; 13(3):1317-22. PubMed ID: 23413833
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Universal Near-Infrared and Mid-Infrared Optical Modulation for Ultrafast Pulse Generation Enabled by Colloidal Plasmonic Semiconductor Nanocrystals.
    Guo Q; Yao Y; Luo ZC; Qin Z; Xie G; Liu M; Kang J; Zhang S; Bi G; Liu X; Qiu J
    ACS Nano; 2016 Oct; 10(10):9463-9469. PubMed ID: 27622468
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Controllable Synthesis of Monodispersed Fe
    Gong M; Ewing D; Casper M; Stramel A; Elliot A; Wu JZ
    ACS Appl Mater Interfaces; 2019 May; 11(21):19286-19293. PubMed ID: 31062575
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Amorphous Materials for Enhanced Localized Surface Plasmon Resonances.
    Zhu C; Xu Q
    Chem Asian J; 2018 Apr; 13(7):730-739. PubMed ID: 29349866
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Synthetic Strategies for Semiconductor Nanocrystals Expressing Localized Surface Plasmon Resonance.
    Niezgoda JS; Rosenthal SJ
    Chemphyschem; 2016 Mar; 17(5):645-53. PubMed ID: 26530667
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Analytical modeling of localized surface plasmon resonance in heterostructure copper sulfide nanocrystals.
    Caldwell AH; Ha DH; Ding X; Robinson RD
    J Chem Phys; 2014 Oct; 141(16):164125. PubMed ID: 25362290
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Shining Light on Aluminum Nanoparticle Synthesis.
    Jacobson CR; Solti D; Renard D; Yuan L; Lou M; Halas NJ
    Acc Chem Res; 2020 Sep; 53(9):2020-2030. PubMed ID: 32865962
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Tight-binding calculations of the optical response of optimally P-doped Si nanocrystals: a model for localized surface plasmon resonance.
    Pi X; Delerue C
    Phys Rev Lett; 2013 Oct; 111(17):177402. PubMed ID: 24206519
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effect of Al3+ co-doping on the dopant local structure, optical properties, and exciton dynamics in Cu+-doped ZnSe nanocrystals.
    Gul S; Cooper JK; Glans PA; Guo J; Yachandra VK; Yano J; Zhang JZ
    ACS Nano; 2013 Oct; 7(10):8680-92. PubMed ID: 24028556
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Broadband Tunable Mid-infrared Plasmon Resonances in Cadmium Oxide Nanocrystals Induced by Size-Dependent Nonstoichiometry.
    Liu Z; Zhong Y; Shafei I; Jeong S; Wang L; Nguyen HT; Sun CJ; Li T; Chen J; Chen L; Losovyj Y; Gao X; Ma W; Ye X
    Nano Lett; 2020 Apr; 20(4):2821-2828. PubMed ID: 32105491
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Switching between Plasmonic and Fluorescent Copper Sulfide Nanocrystals.
    van der Stam W; Gudjonsdottir S; Evers WH; Houtepen AJ
    J Am Chem Soc; 2017 Sep; 139(37):13208-13217. PubMed ID: 28841295
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Constructing functional mesostructured materials from colloidal nanocrystal building blocks.
    Milliron DJ; Buonsanti R; Llordes A; Helms BA
    Acc Chem Res; 2014 Jan; 47(1):236-46. PubMed ID: 24004254
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Yb- and Mn-Doped Lead-Free Double Perovskite Cs
    Chen N; Cai T; Li W; Hills-Kimball K; Yang H; Que M; Nagaoka Y; Liu Z; Yang D; Dong A; Xu CY; Zia R; Chen O
    ACS Appl Mater Interfaces; 2019 May; 11(18):16855-16863. PubMed ID: 30985112
    [TBL] [Abstract][Full Text] [Related]  

  • 75. New aspects of carrier multiplication in semiconductor nanocrystals.
    McGuire JA; Joo J; Pietryga JM; Schaller RD; Klimov VI
    Acc Chem Res; 2008 Dec; 41(12):1810-9. PubMed ID: 19006342
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Electronic doping and redox-potential tuning in colloidal semiconductor nanocrystals.
    Schimpf AM; Knowles KE; Carroll GM; Gamelin DR
    Acc Chem Res; 2015 Jul; 48(7):1929-37. PubMed ID: 26121552
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Control of plasmonic and interband transitions in colloidal indium nitride nanocrystals.
    Palomaki PK; Miller EM; Neale NR
    J Am Chem Soc; 2013 Sep; 135(38):14142-50. PubMed ID: 23972038
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Observation of Considerable Upconversion Enhancement Induced by Cu2-xS Plasmon Nanoparticles.
    Zhou D; Liu D; Xu W; Yin Z; Chen X; Zhou P; Cui S; Chen Z; Song H
    ACS Nano; 2016 May; 10(5):5169-79. PubMed ID: 27149281
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Anisotropic Plasmonic CuS Nanocrystals as a Natural Electronic Material with Hyperbolic Optical Dispersion.
    Córdova-Castro RM; Casavola M; van Schilfgaarde M; Krasavin AV; Green MA; Richards D; Zayats AV
    ACS Nano; 2019 Jun; 13(6):6550-6560. PubMed ID: 31117375
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Quasi-Static Resonances in the Visible Spectrum from All-Dielectric Intermediate Band Semiconductor Nanocrystals.
    Gaspari R; Della Valle G; Ghosh S; Kriegel I; Scotognella F; Cavalli A; Manna L
    Nano Lett; 2017 Dec; 17(12):7691-7695. PubMed ID: 29125777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.