These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 29401038)

  • 1. Permutationally Invariant Potential Energy Surfaces.
    Qu C; Yu Q; Bowman JM
    Annu Rev Phys Chem; 2018 Apr; 69():151-175. PubMed ID: 29401038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Full-dimensional, high-level ab initio potential energy surfaces for H2(H2O) and H2(H2O)2 with application to hydrogen clathrate hydrates.
    Homayoon Z; Conte R; Qu C; Bowman JM
    J Chem Phys; 2015 Aug; 143(8):084302. PubMed ID: 26328838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential energy surface fitting by a statistically localized, permutationally invariant, local interpolating moving least squares method for the many-body potential: method and application to N4.
    Bender JD; Doraiswamy S; Truhlar DG; Candler GV
    J Chem Phys; 2014 Feb; 140(5):054302. PubMed ID: 24511935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Full and fragmented permutationally invariant polynomial potential energy surfaces for trans and cis N-methyl acetamide and isomerization saddle points.
    Nandi A; Qu C; Bowman JM
    J Chem Phys; 2019 Aug; 151(8):084306. PubMed ID: 31470729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing Gaussian Process Regression and Permutationally Invariant Polynomial Approaches To Represent High-Dimensional Potential Energy Surfaces.
    Qu C; Yu Q; Van Hoozen BL; Bowman JM; Vargas-Hernández RA
    J Chem Theory Comput; 2018 Jul; 14(7):3381-3396. PubMed ID: 29847723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fragmented, permutationally invariant polynomial approach for potential energy surfaces of large molecules: Application to N-methyl acetamide.
    Qu C; Bowman JM
    J Chem Phys; 2019 Apr; 150(14):141101. PubMed ID: 30981221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO⁺(H₂O) cluster using accurate potential energy and dipole moment surfaces.
    Homayoon Z
    J Chem Phys; 2014 Sep; 141(12):124311. PubMed ID: 25273441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Permutationally Invariant Fitting of Many-Body, Non-covalent Interactions with Application to Three-Body Methane-Water-Water.
    Conte R; Qu C; Bowman JM
    J Chem Theory Comput; 2015 Apr; 11(4):1631-8. PubMed ID: 26574372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Full-dimensional ab initio potential energy surface and vibrational configuration interaction calculations for vinyl.
    Sharma AR; Braams BJ; Carter S; Shepler BC; Bowman JM
    J Chem Phys; 2009 May; 130(17):174301. PubMed ID: 19425770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab Initio Quantum Approaches to the IR Spectroscopy of Water and Hydrates.
    Bowman JM; Wang Y; Liu H; Mancini JS
    J Phys Chem Lett; 2015 Feb; 6(3):366-73. PubMed ID: 26261949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Permutationally Invariant Polynomial Basis for Molecular Energy Surface Fitting via Monomial Symmetrization.
    Xie Z; Bowman JM
    J Chem Theory Comput; 2010 Jan; 6(1):26-34. PubMed ID: 26614316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Permutationally invariant polynomial representation of polarizability tensor surfaces for linear regression analysis.
    Omodemi O; Kaledin M; Kaledin AL
    J Comput Chem; 2022 Aug; 43(22):1495-1503. PubMed ID: 35737590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. II. Four-atom systems.
    Li J; Jiang B; Guo H
    J Chem Phys; 2013 Nov; 139(20):204103. PubMed ID: 24289340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PESPIP: Software to fit complex molecular and many-body potential energy surfaces with permutationally invariant polynomials.
    Houston PL; Qu C; Yu Q; Conte R; Nandi A; Li JK; Bowman JM
    J Chem Phys; 2023 Jan; 158(4):044109. PubMed ID: 36725524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. III. Molecule-surface interactions.
    Jiang B; Guo H
    J Chem Phys; 2014 Jul; 141(3):034109. PubMed ID: 25053303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Generation of Permutationally Invariant Potential Energy Surfaces for Large Molecules.
    Conte R; Qu C; Houston PL; Bowman JM
    J Chem Theory Comput; 2020 May; 16(5):3264-3272. PubMed ID: 32212729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Permutationally invariant polynomial regression for energies and gradients, using reverse differentiation, achieves orders of magnitude speed-up with high precision compared to other machine learning methods.
    Houston PL; Qu C; Nandi A; Conte R; Yu Q; Bowman JM
    J Chem Phys; 2022 Jan; 156(4):044120. PubMed ID: 35105104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Permutationally invariant fitting of intermolecular potential energy surfaces: A case study of the Ne-C2H2 system.
    Li J; Guo H
    J Chem Phys; 2015 Dec; 143(21):214304. PubMed ID: 26646879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fitting potential energy surfaces with fundamental invariant neural network. II. Generating fundamental invariants for molecular systems with up to ten atoms.
    Chen R; Shao K; Fu B; Zhang DH
    J Chem Phys; 2020 May; 152(20):204307. PubMed ID: 32486688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a Flexible-Monomer Two-Body Carbon Dioxide Potential and Its Application to Clusters up to (CO
    Sode O; Cherry JN
    J Comput Chem; 2017 Dec; 38(32):2763-2774. PubMed ID: 29067701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.