These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29401060)

  • 21. Frequency-dependent fine structure in the frequency-following response: The byproduct of multiple generators.
    Tichko P; Skoe E
    Hear Res; 2017 May; 348():1-15. PubMed ID: 28137699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aging degrades the neural encoding of simple and complex sounds in the human brainstem.
    Clinard CG; Tremblay KL
    J Am Acad Audiol; 2013; 24(7):590-9; quiz 643-4. PubMed ID: 24047946
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of language experience and stimulus context on the neural organization and categorical perception of speech.
    Bidelman GM; Lee CC
    Neuroimage; 2015 Oct; 120():191-200. PubMed ID: 26146197
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of Inter-Stimulus Interval on Speech-Evoked Frequency-Following Response in Elderly Adults.
    Liu D; Hu J; Dong R; Chen J; Musacchia G; Wang S
    Front Aging Neurosci; 2018; 10():357. PubMed ID: 30467474
    [No Abstract]   [Full Text] [Related]  

  • 25. Neural representation of dynamic frequency is degraded in older adults.
    Clinard CG; Cotter CM
    Hear Res; 2015 May; 323():91-8. PubMed ID: 25724819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Subcortical neural representation to Mandarin pitch contours in American and Chinese newborns.
    Jeng FC; Lin CD; Wang TC
    J Acoust Soc Am; 2016 Jun; 139(6):EL190. PubMed ID: 27369171
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Brainstem pitch representation in native speakers of Mandarin is less susceptible to degradation of stimulus temporal regularity.
    Krishnan A; Gandour JT; Bidelman GM
    Brain Res; 2010 Feb; 1313():124-33. PubMed ID: 19961835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Objective information-theoretic algorithm for detecting brainstem-evoked responses to complex stimuli.
    Bidelman GM
    J Am Acad Audiol; 2014 Sep; 25(8):715-26. PubMed ID: 25380118
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cantonese Tone Perception for Children Who Use a Hearing Aid and a Cochlear Implant in Opposite Ears.
    Mok M; Holt CM; Lee KYS; Dowell RC; Vogel AP
    Ear Hear; 2017; 38(6):e359-e368. PubMed ID: 28678079
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scalp-recorded frequency-following responses in neonates.
    Gardi J; Salamy A; Mendelson T
    Audiology; 1979; 18(6):494-506. PubMed ID: 526194
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The frequency-following response (FFR) to speech stimuli: A normative dataset in healthy newborns.
    Ribas-Prats T; Almeida L; Costa-Faidella J; Plana M; Corral MJ; Gómez-Roig MD; Escera C
    Hear Res; 2019 Jan; 371():28-39. PubMed ID: 30448690
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Voice Pitch Elicited Frequency Following Response in Chinese Elderlies.
    Wang S; Hu J; Dong R; Liu D; Chen J; Musacchia G; Liu B
    Front Aging Neurosci; 2016; 8():286. PubMed ID: 27965572
    [No Abstract]   [Full Text] [Related]  

  • 33. Human frequency-following response: representation of pitch contours in Chinese tones.
    Krishnan A; Xu Y; Gandour JT; Cariani PA
    Hear Res; 2004 Mar; 189(1-2):1-12. PubMed ID: 14987747
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasticity in the adult human auditory brainstem following short-term linguistic training.
    Song JH; Skoe E; Wong PC; Kraus N
    J Cogn Neurosci; 2008 Oct; 20(10):1892-902. PubMed ID: 18370594
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of Temporal Envelope Cutoff Frequency, Number of Channels, and Carrier Type on Brainstem Neural Representation of Pitch in Vocoded Speech.
    Ananthakrishnan S; Luo X
    J Speech Lang Hear Res; 2022 Aug; 65(8):3146-3164. PubMed ID: 35944032
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Human frequency-following responses: representation of second formant transitions in normal-hearing and hearing-impaired listeners.
    Plyler PN; Ananthanarayan AK
    J Am Acad Audiol; 2001; 12(10):523-33. PubMed ID: 11791939
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Language-dependent pitch encoding advantage in the brainstem is not limited to acceleration rates that occur in natural speech.
    Krishnan A; Gandour JT; Smalt CJ; Bidelman GM
    Brain Lang; 2010 Sep; 114(3):193-8. PubMed ID: 20570340
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Correlation between the frequency difference limen and an index based on principal component analysis of the frequency-following response of normal hearing listeners.
    Zhang X; Gong Q
    Hear Res; 2017 Feb; 344():255-264. PubMed ID: 27956352
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Place-pitch sensitivity and its relation to consonant recognition by cochlear implant listeners using the MPEAK and SPEAK speech processing strategies.
    Donaldson GS; Nelson DA
    J Acoust Soc Am; 2000 Mar; 107(3):1645-58. PubMed ID: 10738818
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Benefits of Nonlinear Frequency Compression in Adult Hearing Aid Users.
    Kokx-Ryan M; Cohen J; Cord MT; Walden TC; Makashay MJ; Sheffield BM; Brungart DS
    J Am Acad Audiol; 2015; 26(10):838-55. PubMed ID: 26554489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.