These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
363 related articles for article (PubMed ID: 29401375)
1. Different Phosphorus Supplies Altered the Accumulations and Quantitative Distributions of Phytic Acid, Zinc, and Iron in Rice (Oryza sativa L.) Grains. Su D; Zhou L; Zhao Q; Pan G; Cheng F J Agric Food Chem; 2018 Feb; 66(7):1601-1611. PubMed ID: 29401375 [TBL] [Abstract][Full Text] [Related]
2. Impacts of phosphorus and zinc levels on phosphorus and zinc nutrition and phytic acid concentration in wheat (Triticum aestivum L.). Yang XW; Tian XH; Lu XC; Cao YX; Chen ZH J Sci Food Agric; 2011 Oct; 91(13):2322-8. PubMed ID: 21547926 [TBL] [Abstract][Full Text] [Related]
3. Analysis of Lysophospholipid Content in Low Phytate Rice Mutants. Tong C; Chen Y; Tan Y; Liu L; Waters DLE; Rose TJ; Shu Q; Bao J J Agric Food Chem; 2017 Jul; 65(26):5435-5441. PubMed ID: 28603982 [TBL] [Abstract][Full Text] [Related]
4. Positional variation in grain mineral nutrients within a rice panicle and its relation to phytic acid concentration. Su D; Sultan F; Zhao NC; Lei BT; Wang FB; Pan G; Cheng FM J Zhejiang Univ Sci B; 2014 Nov; 15(11):986-96. PubMed ID: 25367791 [TBL] [Abstract][Full Text] [Related]
5. Route and Regulation of Zinc, Cadmium, and Iron Transport in Rice Plants (Oryza sativa L.) during Vegetative Growth and Grain Filling: Metal Transporters, Metal Speciation, Grain Cd Reduction and Zn and Fe Biofortification. Yoneyama T; Ishikawa S; Fujimaki S Int J Mol Sci; 2015 Aug; 16(8):19111-29. PubMed ID: 26287170 [TBL] [Abstract][Full Text] [Related]
6. A decrease in phytic acid content substantially affects the distribution of mineral elements within rice seeds. Sakai H; Iwai T; Matsubara C; Usui Y; Okamura M; Yatou O; Terada Y; Aoki N; Nishida S; Yoshida KT Plant Sci; 2015 Sep; 238():170-7. PubMed ID: 26259185 [TBL] [Abstract][Full Text] [Related]
7. Disruption of OsSULTR3;3 reduces phytate and phosphorus concentrations and alters the metabolite profile in rice grains. Zhao H; Frank T; Tan Y; Zhou C; Jabnoune M; Arpat AB; Cui H; Huang J; He Z; Poirier Y; Engel KH; Shu Q New Phytol; 2016 Aug; 211(3):926-39. PubMed ID: 27110682 [TBL] [Abstract][Full Text] [Related]
8. Mutations of the multi-drug resistance-associated protein ABC transporter gene 5 result in reduction of phytic acid in rice seeds. Xu XH; Zhao HJ; Liu QL; Frank T; Engel KH; An G; Shu QY Theor Appl Genet; 2009 Jun; 119(1):75-83. PubMed ID: 19370321 [TBL] [Abstract][Full Text] [Related]
9. Effects of foliar iron application on iron concentration in polished rice grain and its bioavailability. Wei Y; Shohag MJ; Yang X; Yibin Z J Agric Food Chem; 2012 Nov; 60(45):11433-9. PubMed ID: 23083412 [TBL] [Abstract][Full Text] [Related]
10. Down regulation of a heavy metal transporter gene influences several domestication traits and grain Fe-Zn content in rice. Kappara S; Neelamraju S; Ramanan R Plant Sci; 2018 Nov; 276():208-219. PubMed ID: 30348320 [TBL] [Abstract][Full Text] [Related]
11. Genotype × environment interactions for grain iron and zinc content in rice. Naik SM; Raman AK; Nagamallika M; Venkateshwarlu C; Singh SP; Kumar S; Singh SK; Tomizuddin Ahmed ; Das SP; Prasad K; Izhar T; Mandal NP; Singh NK; Yadav S; Reinke R; Swamy BPM; Virk P; Kumar A J Sci Food Agric; 2020 Aug; 100(11):4150-4164. PubMed ID: 32421211 [TBL] [Abstract][Full Text] [Related]
12. Phytic Acid Contents and Metabolite Profiles of Progenies from Crossing Tan Y; Zhou C; Goßner S; Li Y; Engel KH; Shu Q J Agric Food Chem; 2019 Oct; 67(42):11805-11814. PubMed ID: 31566383 [TBL] [Abstract][Full Text] [Related]
13. Elemental composition of Malawian rice. Joy EJM; Louise Ander E; Broadley MR; Young SD; Chilimba ADC; Hamilton EM; Watts MJ Environ Geochem Health; 2017 Aug; 39(4):835-845. PubMed ID: 27438079 [TBL] [Abstract][Full Text] [Related]
14. Effects of iron and zinc foliar applications on rice plants and their grain accumulation and grain nutritional quality. Yuan L; Wu L; Yang C; Lv Q J Sci Food Agric; 2013 Jan; 93(2):254-61. PubMed ID: 22740351 [TBL] [Abstract][Full Text] [Related]
15. Zinc absorption from low phytic acid genotypes of maize (Zea mays L.), Barley (Hordeum vulgare L.), and Rice (Oryza sativa L.) assessed in a suckling rat pup model. Lönnerdal B; Mendoza C; Brown KH; Rutger JN; Raboy V J Agric Food Chem; 2011 May; 59(9):4755-62. PubMed ID: 21417220 [TBL] [Abstract][Full Text] [Related]
16. Overuse of Phosphorus Fertilizer Reduces the Grain and Flour Protein Contents and Zinc Bioavailability of Winter Wheat (Triticum aestivum L.). Zhang W; Liu D; Liu Y; Chen X; Zou C J Agric Food Chem; 2017 Mar; 65(8):1473-1482. PubMed ID: 28171726 [TBL] [Abstract][Full Text] [Related]
17. Phosphorus uptake, partitioning and redistribution during grain filling in rice. Julia C; Wissuwa M; Kretzschmar T; Jeong K; Rose T Ann Bot; 2016 Nov; 118(6):1151-1162. PubMed ID: 27590335 [TBL] [Abstract][Full Text] [Related]
18. Stability of the Metabolite Signature Resulting from the OsSULTR3;3 Mutation in Low Phytic Acid Rice ( Oryza sativa L.) Seeds upon Cross-breeding. Zhou C; Tan Y; Goßner S; Li Y; Shu Q; Engel KH J Agric Food Chem; 2018 Sep; 66(35):9366-9376. PubMed ID: 30111098 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous iron, zinc, sulfur and phosphorus speciation analysis of barley grain tissues using SEC-ICP-MS and IP-ICP-MS. Persson DP; Hansen TH; Laursen KH; Schjoerring JK; Husted S Metallomics; 2009 Sep; 1(5):418-26. PubMed ID: 21305146 [TBL] [Abstract][Full Text] [Related]
20. Impact of Crossing Parent and Environment on the Metabolite Profiles of Progenies Generated from a Low Phytic Acid Rice ( Oryza sativa L.) Mutant. Zhou C; Tan Y; Goßner S; Li Y; Shu Q; Engel KH J Agric Food Chem; 2019 Feb; 67(8):2396-2407. PubMed ID: 30724567 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]