These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 29401394)

  • 1. Formation of Supported Graphene Oxide: Evidence for Enolate Species.
    Novotny Z; Nguyen MT; Netzer FP; Glezakou VA; Rousseau R; Dohnálek Z
    J Am Chem Soc; 2018 Apr; 140(15):5102-5109. PubMed ID: 29401394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionalization of graphene grown on metal substrate with atomic oxygen: enolate vs epoxide.
    Jung J; Lim H; Oh J; Kim Y
    J Am Chem Soc; 2014 Jun; 136(24):8528-31. PubMed ID: 24885459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First principles study of the graphene/Ru(0001) interface.
    Jiang DE; Du MH; Dai S
    J Chem Phys; 2009 Feb; 130(7):074705. PubMed ID: 19239307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterned formation of enolate functional groups on the graphene basal plane.
    Cassidy A; Pedersen S; Bluhm H; Calisti V; Angot T; Salomon E; Bisson R; Hornekær L
    Phys Chem Chem Phys; 2018 Nov; 20(45):28370-28374. PubMed ID: 30412217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerium Oxide Nanoclusters on Graphene/Ru(0001): Intercalation of Oxygen via Spillover.
    Novotny Z; Netzer FP; Dohnálek Z
    ACS Nano; 2015 Aug; 9(8):8617-26. PubMed ID: 26230753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption and diffusion of Ru adatoms on Ru(0001)-supported graphene: Large-scale first-principles calculations.
    Han Y; Evans JW
    J Chem Phys; 2015 Oct; 143(16):164706. PubMed ID: 26520542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water splits epitaxial graphene and intercalates.
    Feng X; Maier S; Salmeron M
    J Am Chem Soc; 2012 Mar; 134(12):5662-8. PubMed ID: 22400993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methanol decomposition reactions over a boron-doped graphene supported Ru-Pt catalyst.
    Damte JY; Lyu SL; Leggesse EG; Jiang JC
    Phys Chem Chem Phys; 2018 Apr; 20(14):9355-9363. PubMed ID: 29564450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery and local-variation of Dirac cones in oxygen-intercalated graphene on Ru(0001) studied using scanning tunneling microscopy and spectroscopy.
    Jang WJ; Kim H; Jeon JH; Yoon JK; Kahng SJ
    Phys Chem Chem Phys; 2013 Oct; 15(38):16019-23. PubMed ID: 23958746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth and Stability of Titanium Dioxide Nanoclusters on Graphene/Ru(0001).
    Frederick RT; Novotny Z; Netzer FP; Herman GS; Dohnálek Z
    J Phys Chem B; 2018 Jan; 122(2):640-648. PubMed ID: 28792757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostructural adsorption of vanadium oxide on functionalized graphene: a DFT study.
    Ayissi S; Palotás K; Qin H; Yang L; Charpentier PA
    Phys Chem Chem Phys; 2016 Oct; 18(42):29208-29217. PubMed ID: 27731430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafine Nanoparticle-Supported Ru Nanoclusters with Ultrahigh Catalytic Activity.
    Zhu L; Jiang Y; Zheng J; Zhang N; Yu C; Li Y; Pao CW; Chen JL; Jin C; Lee JF; Zhong CJ; Chen BH
    Small; 2015 Sep; 11(34):4385-93. PubMed ID: 26081741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Templating of arrays of Ru nanoclusters by monolayer graphene/Ru Moirés with different periodicities.
    Sutter E; Wang B; Albrecht P; Lahiri J; Bocquet ML; Sutter P
    J Phys Condens Matter; 2012 Aug; 24(31):314201. PubMed ID: 22820349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural properties and site specific interactions of Pt with the graphene/Ru(0001) moiré overlayer.
    Donner K; Jakob P
    J Chem Phys; 2009 Oct; 131(16):164701. PubMed ID: 19894964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial interaction of Ag nanoparticles with graphene oxide supports for improving NH3 and NO adsorption: a first-principles study.
    Tang S; Wu W; Yu J
    Phys Chem Chem Phys; 2016 Mar; 18(11):7797-807. PubMed ID: 26912023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile synthesis of soluble functional graphene by reduction of graphene oxide via acetylacetone and its adsorption of heavy metal ions.
    Xu M; Chai J; Hu N; Huang D; Wang Y; Huang X; Wei H; Yang Z; Zhang Y
    Nanotechnology; 2014 Oct; 25(39):395602. PubMed ID: 25208570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the Heat Transfer Efficiency in Graphene-Epoxy Nanocomposites Using a Magnesium Oxide-Graphene Hybrid Structure.
    Du FP; Yang W; Zhang F; Tang CY; Liu SP; Yin L; Law WC
    ACS Appl Mater Interfaces; 2015 Jul; 7(26):14397-403. PubMed ID: 26075677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption and diffusion of the Rh and Au adatom on graphene moiré/Ru(0001).
    Semidey-Flecha L; Teng D; Habenicht BF; Sholl DS; Xu Y
    J Chem Phys; 2013 May; 138(18):184710. PubMed ID: 23676067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density functional theory modeling of multilayer "epitaxial" graphene oxide.
    Zhou S; Bongiorno A
    Acc Chem Res; 2014 Nov; 47(11):3331-9. PubMed ID: 24845627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unveiling the atomistic mechanisms for oxygen intercalation in a strongly interacting graphene-metal interface.
    Romero-Muñiz C; Martín-Recio A; Pou P; Gómez-Rodríguez JM; Pérez R
    Phys Chem Chem Phys; 2018 May; 20(19):13370-13378. PubMed ID: 29721570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.