BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 29401624)

  • 41. Igf1R/InsR function is required for axon extension and corpus callosum formation.
    Jin J; Ravindran P; Di Meo D; Püschel AW
    PLoS One; 2019; 14(7):e0219362. PubMed ID: 31318893
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deficiency of CDKN1A or both CDKN1A and CDKN1B affects the pubertal development of mouse Leydig cells.
    Lin H; Huang Y; Su Z; Zhu Q; Ge Y; Wang G; Wang CQ; Mukai M; Holsberger DR; Cooke PS; Lian QQ; Ge RS
    Biol Reprod; 2015 Mar; 92(3):77. PubMed ID: 25609837
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Morphological and functional maturation of Leydig cells: from rodent models to primates.
    Teerds KJ; Huhtaniemi IT
    Hum Reprod Update; 2015; 21(3):310-28. PubMed ID: 25724971
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of insulin-like growth factor I on steroidogenic enzyme expression levels in mouse leydig cells.
    Wang GM; O'Shaughnessy PJ; Chubb C; Robaire B; Hardy MP
    Endocrinology; 2003 Nov; 144(11):5058-64. PubMed ID: 12959969
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Adrenocorticotropic hormone directly stimulates testosterone production by the fetal and neonatal mouse testis.
    O'Shaughnessy PJ; Fleming LM; Jackson G; Hochgeschwender U; Reed P; Baker PJ
    Endocrinology; 2003 Aug; 144(8):3279-84. PubMed ID: 12865302
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Endocrine regulation of testosterone production by Leydig cells in the catfish, Clarias batrachus: probable mediators of growth hormone.
    Nee Pathak ND; Kumar P; Lal B
    Anim Reprod Sci; 2015 Mar; 154():158-65. PubMed ID: 25650168
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mapping lineage progression of somatic progenitor cells in the mouse fetal testis.
    Liu C; Rodriguez K; Yao HH
    Development; 2016 Oct; 143(20):3700-3710. PubMed ID: 27621062
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Estrogen receptor-related receptor γ regulates testicular steroidogenesis through direct and indirect regulation of steroidogenic gene expression.
    Park E; Kumar S; Lee B; Kim KJ; Seo JE; Choi HS; Lee K
    Mol Cell Endocrinol; 2017 Sep; 452():15-24. PubMed ID: 28479375
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Wt1 is involved in leydig cell steroid hormone biosynthesis by regulating paracrine factor expression in mice.
    Chen M; Wang X; Wang Y; Zhang L; Xu B; Lv L; Cui X; Li W; Gao F
    Biol Reprod; 2014 Apr; 90(4):71. PubMed ID: 24571983
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gene expression during development of fetal and adult Leydig cells.
    Dong L; Jelinsky SA; Finger JN; Johnston DS; Kopf GS; Sottas CM; Hardy MP; Ge RS
    Ann N Y Acad Sci; 2007 Dec; 1120():16-35. PubMed ID: 18184909
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Distinct roles for steroidogenic factor 1 and desert hedgehog pathways in fetal and adult Leydig cell development.
    Park SY; Tong M; Jameson JL
    Endocrinology; 2007 Aug; 148(8):3704-10. PubMed ID: 17495005
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of the role of FSH in regulation of Leydig cell function during different stages of its differentiation.
    Sriraman V; Jagannadha Rao A
    Mol Cell Endocrinol; 2004 Sep; 224(1-2):73-82. PubMed ID: 15353182
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of Midazolam on the Development of Adult Leydig Cells From Stem Cells
    Zhao X; Ji M; Wen X; Chen D; Huang F; Guan X; Tian J; Xie J; Shao J; Wang J; Huang L; Lin H; Ye L; Chen H
    Front Endocrinol (Lausanne); 2021; 12():765251. PubMed ID: 34867807
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of luteinizing hormone (LH) and androgen on steady state levels of messenger ribonucleic acid for LH receptors, androgen receptors, and steroidogenic enzymes in rat Leydig cell progenitors in vivo.
    Shan L; Hardy DO; Catterall JF; Hardy MP
    Endocrinology; 1995 Apr; 136(4):1686-93. PubMed ID: 7895679
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Human testicular insulin-like factor 3: in relation to development, reproductive hormones and andrological disorders.
    Bay K; Andersson AM
    Int J Androl; 2011 Apr; 34(2):97-109. PubMed ID: 20550598
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The GC-IGF1 axis-mediated testicular dysplasia caused by prenatal caffeine exposure.
    Pei LG; Zhang Q; Yuan C; Liu M; Zou YF; Lv F; Luo DJ; Zhong S; Wang H
    J Endocrinol; 2019 Jul; 242(1):M17-M32. PubMed ID: 31141788
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Targeting Insulin Receptor in Breast Cancer Using Small Engineered Protein Scaffolds.
    Chan JY; Hackel BJ; Yee D
    Mol Cancer Ther; 2017 Jul; 16(7):1324-1334. PubMed ID: 28468775
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Disruption of insulin receptor function inhibits proliferation in endocrine-resistant breast cancer cells.
    Chan JY; LaPara K; Yee D
    Oncogene; 2016 Aug; 35(32):4235-43. PubMed ID: 26876199
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulation of development of rat stem and progenitor Leydig cells by activin.
    Li L; Wang Y; Li X; Liu S; Wang G; Lin H; Zhu Q; Guo J; Chen H; Ge HS; Ge RS
    Andrology; 2017 Jan; 5(1):125-132. PubMed ID: 27673747
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Essential roles of COUP-TFII in Leydig cell differentiation and male fertility.
    Qin J; Tsai MJ; Tsai SY
    PLoS One; 2008 Sep; 3(9):e3285. PubMed ID: 18818749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.