These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 29401752)
41. Drift removal for improving the accuracy of gait parameters using wearable sensor systems. Takeda R; Lisco G; Fujisawa T; Gastaldi L; Tohyama H; Tadano S Sensors (Basel); 2014 Dec; 14(12):23230-47. PubMed ID: 25490587 [TBL] [Abstract][Full Text] [Related]
42. Assessment of Foot Trajectory for Human Gait Phase Detection Using Wireless Ultrasonic Sensor Network. Qi Y; Soh CB; Gunawan E; Low KS; Thomas R IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):88-97. PubMed ID: 25769165 [TBL] [Abstract][Full Text] [Related]
43. PI-Sole: A Low-Cost Solution for Gait Monitoring Using Off-The-Shelf Piezoelectric Sensors and IMU. Chandel V; Singhal S; Sharma V; Ahmed N; Ghose A Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3290-3296. PubMed ID: 31946586 [TBL] [Abstract][Full Text] [Related]
44. Printed multifunctional flexible device with an integrated motion sensor for health care monitoring. Yamamoto Y; Harada S; Yamamoto D; Honda W; Arie T; Akita S; Takei K Sci Adv; 2016 Nov; 2(11):e1601473. PubMed ID: 28138532 [TBL] [Abstract][Full Text] [Related]
45. The use of wearable devices for walking and running gait analysis outside of the lab: A systematic review. Benson LC; Clermont CA; Bošnjak E; Ferber R Gait Posture; 2018 Jun; 63():124-138. PubMed ID: 29730488 [TBL] [Abstract][Full Text] [Related]
46. Multiple-Wearable-Sensor-Based Gait Classification and Analysis in Patients with Neurological Disorders. Hsu WC; Sugiarto T; Lin YJ; Yang FC; Lin ZY; Sun CT; Hsu CL; Chou KN Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30314269 [TBL] [Abstract][Full Text] [Related]
47. An Ambulatory Gait Monitoring System with Activity Classification and Gait Parameter Calculation Based on a Single Foot Inertial Sensor. Song M; Kim J IEEE Trans Biomed Eng; 2018 Apr; 65(4):885-893. PubMed ID: 28708542 [TBL] [Abstract][Full Text] [Related]
48. One-Step Preparation of a Core-Spun Cu/P(VDF-TrFE) Nanofibrous Yarn for Wearable Smart Textile to Monitor Human Movement. Dai Z; Wang N; Yu Y; Lu Y; Jiang L; Zhang DA; Wang X; Yan X; Long YZ ACS Appl Mater Interfaces; 2021 Sep; 13(37):44234-44242. PubMed ID: 34505786 [TBL] [Abstract][Full Text] [Related]
49. Measuring gait kinematics in patients with severe hip osteoarthritis using wearable sensors. Ismailidis P; Nüesch C; Kaufmann M; Clauss M; Pagenstert G; Eckardt A; Ilchmann T; Mündermann A Gait Posture; 2020 Sep; 81():49-55. PubMed ID: 32679463 [TBL] [Abstract][Full Text] [Related]
50. Bi-Directional Long Short-Term Memory-Based Gait Phase Recognition Method Robust to Directional Variations in Subject's Gait Progression Using Wearable Inertial Sensor. Jeon H; Lee D Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400434 [TBL] [Abstract][Full Text] [Related]
51. Measurement and Correction of Stooped Posture during Gait Using Wearable Sensors in Patients with Parkinsonism: A Preliminary Study. Kim SH; Yun SJ; Dang QK; Chee Y; Chung SG; Oh BM; Kim K; Seo HG Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33808057 [TBL] [Abstract][Full Text] [Related]
52. [Development of flexible multi-phase barium titanate piezoelectric sensor for physiological health and action behavior monitoring]. Zeng Q; Han S; Liang Y; Tian X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Jun; 41(3):421-429. PubMed ID: 38932526 [TBL] [Abstract][Full Text] [Related]
53. Towards Wearable-Inertial-Sensor-Based Gait Posture Evaluation for Subjects with Unbalanced Gaits. Qiu S; Wang H; Li J; Zhao H; Wang Z; Wang J; Wang Q; Plettemeier D; Bärhold M; Bauer T; Ru B Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098239 [TBL] [Abstract][Full Text] [Related]
54. The use of accelerometers and gyroscopes to estimate hip and knee angles on gait analysis. Alonge F; Cucco E; D'Ippolito F; Pulizzotto A Sensors (Basel); 2014 May; 14(5):8430-46. PubMed ID: 24828578 [TBL] [Abstract][Full Text] [Related]
55. Monitoring respiratory rates with a wearable system using a stretchable strain sensor during moderate exercise. Yamamoto A; Nakamoto H; Bessho Y; Watanabe Y; Oki Y; Ono K; Fujimoto Y; Terada T; Ishikawa A Med Biol Eng Comput; 2019 Dec; 57(12):2741-2756. PubMed ID: 31734768 [TBL] [Abstract][Full Text] [Related]
56. Machine learning-based motor assessment of Parkinson's disease using postural sway, gait and lifestyle features on crowdsourced smartphone data. Abujrida H; Agu E; Pahlavan K Biomed Phys Eng Express; 2020 Mar; 6(3):035005. PubMed ID: 33438650 [TBL] [Abstract][Full Text] [Related]
57. Wearable Sensors to Monitor, Enable Feedback, and Measure Outcomes of Activity and Practice. Dobkin BH; Martinez C Curr Neurol Neurosci Rep; 2018 Oct; 18(12):87. PubMed ID: 30293160 [TBL] [Abstract][Full Text] [Related]
58. Reliability and Validity of a Wearable Sensing System and Online Gait Analysis Report in Persons after Stroke. Schwarz A; Al-Haj Husain A; Einaudi L; Thürlimann E; Läderach J; Awai Easthope C; Held JPO; Luft AR Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679424 [TBL] [Abstract][Full Text] [Related]
59. Wireless battery-free body sensor networks using near-field-enabled clothing. Lin R; Kim HJ; Achavananthadith S; Kurt SA; Tan SCC; Yao H; Tee BCK; Lee JKW; Ho JS Nat Commun; 2020 Jan; 11(1):444. PubMed ID: 31974376 [TBL] [Abstract][Full Text] [Related]