BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 29401757)

  • 1. Transcriptomic Analysis Provides Insights into Grafting Union Development in Pecan (Carya illinoinensis).
    Mo Z; Feng G; Su W; Liu Z; Peng F
    Genes (Basel); 2018 Feb; 9(2):. PubMed ID: 29401757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional dynamics reveals the asymmetrical events underlying graft union formation in pecan (Carya illinoinensis).
    Mo Z; Zhang Y; Hou M; Hu L; Zhai M; Xuan J
    Tree Physiol; 2024 May; 44(5):. PubMed ID: 38598328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome Analysis of Genes Involved in Lipid Biosynthesis in the Developing Embryo of Pecan (Carya illinoinensis).
    Huang R; Huang Y; Sun Z; Huang J; Wang Z
    J Agric Food Chem; 2017 May; 65(20):4223-4236. PubMed ID: 28459558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA-Seq Reveals Flavonoid Biosynthesis-Related Genes in Pecan ( Carya illinoinensis) Kernels.
    Zhang C; Yao X; Ren H; Chang J; Wang K
    J Agric Food Chem; 2019 Jan; 67(1):148-158. PubMed ID: 30563335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of transcriptome in hickory (Carya cathayensis), and uncover the dynamics in the hormonal signaling pathway during graft process.
    Qiu L; Jiang B; Fang J; Shen Y; Fang Z; Rm SK; Yi K; Shen C; Yan D; Zheng B
    BMC Genomics; 2016 Nov; 17(1):935. PubMed ID: 27855649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA-Seq Analysis of Developing Pecan (Carya illinoinensis) Embryos Reveals Parallel Expression Patterns among Allergen and Lipid Metabolism Genes.
    Mattison CP; Rai R; Settlage RE; Hinchliffe DJ; Madison C; Bland JM; Brashear S; Graham CJ; Tarver MR; Florane C; Bechtel PJ
    J Agric Food Chem; 2017 Feb; 65(7):1443-1455. PubMed ID: 28121438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome analysis of pecan seeds at different developing stages and identification of key genes involved in lipid metabolism.
    Xu Z; Ni J; Shah FA; Wang Q; Wang Z; Wu L; Fu S
    PLoS One; 2018; 13(4):e0195913. PubMed ID: 29694395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomic Analysis to Unravel Potential Pathways and Genes Involved in Pecan (
    Chen Y; Zhang S; Zhao Y; Mo Z; Wang W; Zhu C
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36232919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipidomic and comparative transcriptomic analysis of fatty acid synthesis pathway in Carya illinoinensis embryo.
    Lyu YZ; Jiang H; Sun HN; Yang Y; Chao Y; Huang LB; Dong XY
    Tree Physiol; 2023 Sep; 43(9):1675-1690. PubMed ID: 37171624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Proteomic Analysis of the Graft Unions in Hickory (
    Xu D; Yuan H; Tong Y; Zhao L; Qiu L; Guo W; Shen C; Liu H; Yan D; Zheng B
    Front Plant Sci; 2017; 8():676. PubMed ID: 28496455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mycorrhization of pecan (Carya illinoinensis) with black truffles: Tuber melanosporum and Tuber brumale.
    Marozzi G; Sánchez S; Benucci GM; Bonito G; Falini LB; Albertini E; Donnini D
    Mycorrhiza; 2017 Apr; 27(3):303-309. PubMed ID: 27838857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative Phosphoproteomic Analysis Reveals Potential Regulatory Mechanisms of Early Fruit Enlargement in Pecan (
    Yang Z; Qin T; Jin H; Wang J; Li C; Lim KJ; Wang Z
    J Agric Food Chem; 2023 Mar; 71(12):4901-4914. PubMed ID: 36938622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome Analysis of Resistant and Susceptible Pecan (
    Chang J; Wang K; Zhang C; Han X; Zhang X; Ren H; Yao X
    J Agric Food Chem; 2023 Apr; 71(14):5812-5822. PubMed ID: 36995220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic analysis reveals potential pathways associated with salt resistance in pecan (Carya illinoensis K. Koch).
    Zhang J; Jiao Y; Sharma A; Shen D; Wei B; Hong C; Zheng B; Pan C
    J Biotechnol; 2021 Mar; 330():17-26. PubMed ID: 33607173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of pecan cultivars Mahan and Western in East China.
    Luo X; Li Z; Sun Z; Wan X
    Genet Mol Res; 2016 Sep; 15(3):. PubMed ID: 27706743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extending the Cultivation Area of Pecan (
    Zheng J; Hänninen H; Lin J; Shen S; Zhang R
    Front Plant Sci; 2021; 12():768963. PubMed ID: 34917105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Full-length transcriptome analysis of pecan (Carya illinoinensis) kernels.
    Zhang C; Ren H; Yao X; Wang K; Chang J
    G3 (Bethesda); 2021 Aug; 11(8):. PubMed ID: 34849807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and Expression Analysis of MPK and MKK Gene Families in Pecan (
    Zhao J; Zhu K; Chen M; Ma W; Liu J; Tan P; Peng F
    Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Analysis of the Transcriptomes of Persisting and Abscised Fruitlets: Insights into Plant Hormone and Carbohydrate Metabolism Regulated Self-Thinning of Pecan Fruitlets during the Early Stage.
    Zhang J; Wang T; Zhang F; Liu Y; Wang G
    Curr Issues Mol Biol; 2021 Dec; 44(1):176-193. PubMed ID: 35723392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenolic content and anti-hyperglycemic activity of pecan cultivars from Egypt.
    El Hawary SS; Saad S; El Halawany AM; Ali ZY; El Bishbishy M
    Pharm Biol; 2016; 54(5):788-98. PubMed ID: 26450069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.