These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 29401817)

  • 1. Giant Goos-Hänchen shifts in non-Hermitian dielectric multilayers incorporated with graphene.
    Zhao D; Ke S; Liu Q; Wang B; Lu P
    Opt Express; 2018 Feb; 26(3):2817-2828. PubMed ID: 29401817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-reciprocal spatial and quasi-reciprocal angular Goos-Hänchen shifts around double CPA-LPs in PT-symmetric Thue-Morse photonic crystals.
    Ni H; Zhou G; Chen X; Zhao D; Wang Y
    Opt Express; 2023 Jan; 31(2):1234-1248. PubMed ID: 36785163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exceptional points in Fano-resonant graphene metamaterials.
    Liu Q; Wang B; Ke S; Long H; Wang K; Lu P
    Opt Express; 2017 Apr; 25(7):7203-7212. PubMed ID: 28380845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Giant and controllable Goos-Hänchen shift of monolayer graphene strips enabled by a multilayer dielectric grating structure.
    Zhang C; Hong Y; Li Z; Da H
    Appl Opt; 2022 Jan; 61(3):844-850. PubMed ID: 35200793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Goos-Hänchen shift of the reflected wave through an anisotropic metamaterial containing metal/dielectric nanocomposites.
    Huang Y; Zhao B; Gao L
    J Opt Soc Am A Opt Image Sci Vis; 2012 Jul; 29(7):1436-44. PubMed ID: 22751412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant and highly reflective Goos-Hänchen shift in a metal-dielectric multilayer Fano structure.
    Saito H; Neo Y; Matsumoto T; Tomita M
    Opt Express; 2019 Sep; 27(20):28629-28639. PubMed ID: 31684611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Giant negative Goos-Hänchen shifts for a photonic crystal with a negative effective index.
    He J; Yi J; He S
    Opt Express; 2006 Apr; 14(7):3024-9. PubMed ID: 19516442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large spatial shifts of reflective beam at the surface of graphene/hBN metamaterials.
    Song HY; Fu SF; Zhang Q; Zhou S; Wang XZ
    Opt Express; 2021 Jun; 29(12):19068-19083. PubMed ID: 34154149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature controllable Goos-Hänchen shift and high reflectance of monolayer graphene induced by BK7 glass grating.
    Lu D; Shanshan M; Zhu X; Da H
    Nanotechnology; 2022 Sep; 33(48):. PubMed ID: 35994973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Giant Goos-Hänchen Shifts in Au-ITO-TMDCs-Graphene Heterostructure and Its Potential for High Performance Sensor.
    Han L; Pan J; Wu C; Li K; Ding H; Ji Q; Yang M; Wang J; Zhang H; Huang T
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32075012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable Goos-Hänchen shift from graphene ribbon array.
    Zeng X; Al-Amri M; Zubairy MS
    Opt Express; 2017 Oct; 25(20):23579-23588. PubMed ID: 29041309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Goos-Hänchen and Imbert-Fedorov shifts of higher-order Laguerre-Gaussian beams reflected from a dielectric slab.
    Pichugin KN; Maksimov DN; Sadreev AF
    J Opt Soc Am A Opt Image Sci Vis; 2018 Aug; 35(8):1324-1329. PubMed ID: 30110294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coexistence of giant Goos-Hänchen shift and high reflectance in Dirac semimetal based multilayered structure.
    Yin D; Liu W; Zhang M; Da H
    Phys Chem Chem Phys; 2024 Apr; 26(14):10974-10981. PubMed ID: 38526392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct experimental observation of giant Goos-Hänchen shifts from bandgap-enhanced total internal reflection.
    Wan Y; Zheng Z; Kong W; Liu Y; Lu Z; Bian Y
    Opt Lett; 2011 Sep; 36(18):3539-41. PubMed ID: 21931383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Giant Goos-Hänchen shift in scattering: the role of interfering localized plasmon modes.
    Soni J; Mansha S; Dutta Gupta S; Banerjee A; Ghosh N
    Opt Lett; 2014 Jul; 39(14):4100-3. PubMed ID: 25121661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nearly three orders of magnitude enhancement of Goos-Hanchen shift by exciting Bloch surface wave.
    Wan Y; Zheng Z; Kong W; Zhao X; Liu Y; Bian Y; Liu J
    Opt Express; 2012 Apr; 20(8):8998-9003. PubMed ID: 22513610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Sensitivity Goos-Hänchen Shifts Sensor Based on BlueP-TMDCs-Graphene Heterostructure.
    Han L; Hu Z; Pan J; Huang T; Luo D
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32604852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Giant Goos-Hänchen shift induced by bounded states in optical PT-symmetric bilayer structures.
    Cao Y; Fu Y; Zhou Q; Xu Y; Gao L; Chen H
    Opt Express; 2019 Mar; 27(6):7857-7867. PubMed ID: 31052613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Goos-Hänchen shift in cryogenic defect photonic crystals composed of superconductor HgBa2Ca2Cu3O8+δ.
    Liu F; Hu H; Zhao D; Liu F; Zhao M
    PLoS One; 2024; 19(5):e0302142. PubMed ID: 38722957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Goos-Hänchen shifts of the reflected waves from a cold, inhomogeneous, and magnetized plasma slab.
    Xu G; Zang T; Pan T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016603. PubMed ID: 20365487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.