BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29401867)

  • 1. Reverse-mode PSLC multi-plane optical see-through display for AR applications.
    Liu S; Li Y; Zhou P; Chen Q; Su Y
    Opt Express; 2018 Feb; 26(3):3394-3403. PubMed ID: 29401867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-plane augmented reality display based on cholesteric liquid crystal reflective films.
    Chen Q; Peng Z; Li Y; Liu S; Zhou P; Gu J; Lu J; Yao L; Wang M; Su Y
    Opt Express; 2019 Apr; 27(9):12039-12047. PubMed ID: 31052749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of Highly Durable Reverse-Mode Polymer-Stabilized Liquid Crystal Films with Polymer Walls.
    Li H; Xu J; Ren Y; Han R; Song H; Huang R; Wang X; Zhang L; Cao H; Zou C; Yang H
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):2228-2236. PubMed ID: 36579944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-depth augmented reality display with reflective polarization-dependent lenses.
    Li Y; Yang Q; Xiong J; Li K; Wu ST
    Opt Express; 2021 Sep; 29(20):31478-31487. PubMed ID: 34615239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glasses-free 3-D visualization with multi-layered transparent cholesteric films.
    Joshi V; Groom M; Chien LC
    Opt Express; 2019 Jun; 27(12):16847-16854. PubMed ID: 31252904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast-response Pancharatnam-Berry phase optical elements based on polymer-stabilized liquid crystal.
    Li S; Liu Y; Li Y; Liu S; Chen S; Su Y
    Opt Express; 2019 Aug; 27(16):22522-22531. PubMed ID: 31510543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel prototype for an optical see-through head-mounted display with addressable focus cues.
    Liu S; Hua H; Cheng D
    IEEE Trans Vis Comput Graph; 2010; 16(3):381-93. PubMed ID: 20224134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cascaded transflective liquid crystal planar lenses enable multi-plane augmented reality.
    Ye X; Fan F; Wen S
    Opt Lett; 2023 Nov; 48(22):5919-5922. PubMed ID: 37966752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and tolerance of a free-form optical system for an optical see-through multi-focal-plane display.
    Hu X; Hua H
    Appl Opt; 2015 Nov; 54(33):9990-9. PubMed ID: 26836568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image quality enhancement of transparent waveguide display using a twisted nematic mode polymer-stabilized liquid crystal.
    Tseng HY; Lin KW; Chang LM; Lu GY; Li CC; Wang SW; Cheng KT; Lin TH
    Opt Express; 2022 Feb; 30(4):5255-5264. PubMed ID: 35209492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of a Thermally Light-Transmittance-Controllable Film from a Coexistent System of Polymer-Dispersed and Polymer-Stabilized Liquid Crystals.
    Guo SM; Liang X; Zhang CH; Chen M; Shen C; Zhang LY; Yuan X; He BF; Yang H
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2942-2947. PubMed ID: 28001028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dye-Doped Electrically Smart Windows Based on Polymer-Stabilized Liquid Crystal.
    Sun H; Xie Z; Ju C; Hu X; Yuan D; Zhao W; Shui L; Zhou G
    Polymers (Basel); 2019 Apr; 11(4):. PubMed ID: 30995763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible and infrared optical modulation of PSLC smart films doped with ATO nanoparticles.
    Zhang Z; Zhang R; Xu L; Li J; Yang L; Yang Y; Bolshakov A; Zhu J
    Dalton Trans; 2021 Jul; 50(29):10033-10040. PubMed ID: 34231593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon Nanotube Reinforced Polymer-Stabilized Liquid Crystal Device: Lowered and Thermally Invariant Threshold with Accelerated Dynamics.
    Krishna Prasad S; Baral M; Murali A; Jaisankar SN
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26622-26629. PubMed ID: 28727450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser speckle reduction using polymer-stabilized liquid crystals doped with Ag nanowires.
    Jiang X; Zhou W; Wang W; Le Z; Dong W
    Heliyon; 2023 Oct; 9(10):e20934. PubMed ID: 37876421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colorful multi-plane augmented reality display with dynamically tunable reflective Pancharatnam-Berry phase lens.
    Yan X; Zhu J; Liu M; Liu Y; Luo D
    Opt Express; 2024 Mar; 32(6):9161-9170. PubMed ID: 38571155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics.
    Hu X; Hua H
    Opt Express; 2014 Jun; 22(11):13896-903. PubMed ID: 24921581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All-optical and polarization-independent spatial filter based on a vertically-aligned polymer-stabilized liquid crystal film with a photoconductive layer.
    Huang CY; Ma JM; Mo TS; Lo KC; Lo KY; Lee CR
    Opt Express; 2009 Dec; 17(25):22386-92. PubMed ID: 20052162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses.
    Zhan T; Lee YH; Wu ST
    Opt Express; 2018 Feb; 26(4):4863-4872. PubMed ID: 29475331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer Stabilized Liquid Crystal Smart Window with Flexible Substrates Based on Low-Temperature Treatment of Polyamide Acid Technology.
    Zhang Y; Wang C; Zhao W; Li M; Wang X; Yang X; Hu X; Yuan D; Yang W; Zhang Y; Lv P; He J; Zhou G
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31766151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.