These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 29401894)

  • 1. Impact of substrate etching on plasmonic elements and metamaterials: preventing red shift and improving refractive index sensitivity.
    Moritake Y; Tanaka T
    Opt Express; 2018 Feb; 26(3):3674-3683. PubMed ID: 29401894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dewetting Metal Nanofilms-Effect of Substrate on Refractive Index Sensitivity of Nanoplasmonic Gold.
    Bhalla N; Jain A; Lee Y; Shen AQ; Lee D
    Nanomaterials (Basel); 2019 Oct; 9(11):. PubMed ID: 31717894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of shape in substrate-induced plasmonic shift and mode uncovering on gold nanocrystals.
    Qin F; Cui X; Ruan Q; Lai Y; Wang J; Ma H; Lin HQ
    Nanoscale; 2016 Oct; 8(40):17645-17657. PubMed ID: 27714128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates.
    Chen H; Shao L; Ming T; Woo KC; Man YC; Wang J; Lin HQ
    ACS Nano; 2011 Aug; 5(8):6754-63. PubMed ID: 21786827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fano Resonance Based on Metal-Insulator-Metal Waveguide-Coupled Double Rectangular Cavities for Plasmonic Nanosensors.
    Zhang Z; Luo L; Xue C; Zhang W; Yan S
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27164101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithography.
    Hicks EM; Zhang X; Zou S; Lyandres O; Spears KG; Schatz GC; Van Duyne RP
    J Phys Chem B; 2005 Dec; 109(47):22351-8. PubMed ID: 16853911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Under-Etched Plasmonic Disks on Indium Tin Oxide for Enhanced Refractive Index Sensing on a Combined Electrochemical and Optical Platform.
    Dyrnesli H; Klös G; Sutherland DS
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32069943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable plasmonic substrates with ultrahigh Q-factor resonances.
    Chorsi HT; Lee Y; Alù A; Zhang JXJ
    Sci Rep; 2017 Nov; 7(1):15985. PubMed ID: 29167504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Higher order Fano graphene metamaterials for nanoscale optical sensing.
    Guo X; Hu H; Zhu X; Yang X; Dai Q
    Nanoscale; 2017 Oct; 9(39):14998-15004. PubMed ID: 28956583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and analysis of high-sensitivity refractive index sensors based on plasmonic absorbers with Fano response in the near-infrared spectral region.
    Tavakoli F; Zarrabi FB; Saghaei H
    Appl Opt; 2019 Jul; 58(20):5404-5414. PubMed ID: 31504008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Substrate Etching on Terahertz Metamaterial Resonances and Its Liquid Sensing Applications.
    Park SJ; Cunningham J
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32492949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong field enhancement and light-matter interactions with all-dielectric metamaterials based on split bar resonators.
    Zhang J; Liu W; Zhu Z; Yuan X; Qin S
    Opt Express; 2014 Dec; 22(25):30889-98. PubMed ID: 25607038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Air-like plasmonics with ultralow-refractive-index silica aerogels.
    Kim Y; Baek S; Gupta P; Kim C; Chang K; Ryu SP; Kang H; Kim WS; Myoung J; Park W; Kim K
    Sci Rep; 2019 Feb; 9(1):2265. PubMed ID: 30783170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Switching plasmonic Fano resonance in gold nanosphere-nanoplate heterodimers.
    Lu W; Cui X; Chow TH; Shao L; Wang H; Chen H; Wang J
    Nanoscale; 2019 May; 11(19):9641-9653. PubMed ID: 31065663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-reference plasmonic sensors based on double Fano resonances.
    Wang Y; Sun C; Li H; Gong Q; Chen J
    Nanoscale; 2017 Aug; 9(31):11085-11092. PubMed ID: 28741643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring the negative-refractive-index metamaterials composed of semiconductor-metal-semiconductor gold ring/disk cavity heptamers to support strong Fano resonances in the visible spectrum.
    Ahmadivand A; Pala N
    J Opt Soc Am A Opt Image Sci Vis; 2015 Feb; 32(2):204-12. PubMed ID: 26366591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing.
    Cetin AE; Altug H
    ACS Nano; 2012 Nov; 6(11):9989-95. PubMed ID: 23092386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved Refractive Index-Sensing Performance of Multimode Fano-Resonance-Based Metal-Insulator-Metal Nanostructures.
    Chau YC; Chou Chao CT; Jumat SZBH; Kooh MRR; Thotagamuge R; Lim CM; Chiang HP
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic Au islands on polymer nanopillars.
    Knoben W; Brongersma SH; Crego-Calama M
    Nanotechnology; 2011 Jul; 22(29):295303. PubMed ID: 21680962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine tuning of plasmonic properties of monolayers of weakly interacting silver nanocubes on thin silicon films.
    Bottomley A; Prezgot D; Staff A; Ianoul A
    Nanoscale; 2012 Oct; 4(20):6374-82. PubMed ID: 22948712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.