These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29401894)

  • 21. Light-tunable Fano resonance in metal-dielectric multilayer structures.
    Hayashi S; Nesterenko DV; Rahmouni A; Ishitobi H; Inouye Y; Kawata S; Sekkat Z
    Sci Rep; 2016 Sep; 6():33144. PubMed ID: 27623741
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasmon resonance hybridization in self-assembled copper nanoparticle clusters: efficient and precise localization of surface plasmon resonance (LSPR) sensing based on Fano resonances.
    Ahmadivand A; Pala N
    Appl Spectrosc; 2015; 69(2):277-86. PubMed ID: 25587712
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancement of refractive index sensing for an infrared plasmonic metamaterial absorber with a nanogap.
    Jung JY; Lee J; Choi JH; Choi DG; Jeong JH
    Opt Express; 2021 Jul; 29(14):22796-22804. PubMed ID: 34266034
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly Sensitive Plasmonic Optical Sensors Based on Gold Core-Satellite Nanostructures Immobilized on Glass Substrates.
    Ode K; Honjo M; Takashima Y; Tsuruoka T; Akamatsu K
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20522-6. PubMed ID: 27482968
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Constructive-interference-enhanced Fano resonance of silver plasmonic heptamers with a substrate mirror: a numerical study.
    Zhu X; Shi H; Zhang S; Liu Q; Duan H
    Opt Express; 2017 May; 25(9):9938-9946. PubMed ID: 28468373
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulating Optical Characteristics of Nanoimprinted Plasmonic Device by Re-Shaping Process of Polymer Mold.
    Yamada H; Sueyoshi K; Hisamoto H; Endo T
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832735
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmonic Metasensors Based on 2D Hybrid Atomically Thin Perovskite Nanomaterials.
    Zeng S; Liang G; Gheno A; Vedraine S; Ratier B; Ho HP; Yu N
    Nanomaterials (Basel); 2020 Jun; 10(7):. PubMed ID: 32629982
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Double-layered metal grating for high-performance refractive index sensing.
    Li G; Shen Y; Xiao G; Jin C
    Opt Express; 2015 Apr; 23(7):8995-9003. PubMed ID: 25968735
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance.
    Jia P; Jiang H; Sabarinathan J; Yang J
    Nanotechnology; 2013 May; 24(19):195501. PubMed ID: 23579785
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple Fano-Like MIM Plasmonic Structure Based on Triangular Resonator for Refractive Index Sensing.
    Jankovic N; Cselyuszka N
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29351186
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators.
    Lu H; Liu X; Mao D; Wang G
    Opt Lett; 2012 Sep; 37(18):3780-2. PubMed ID: 23041857
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tunable compact nanosensor based on Fano resonance in a plasmonic waveguide system.
    Ren X; Ren K; Cai Y
    Appl Opt; 2017 Nov; 56(31):H1-H9. PubMed ID: 29091660
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Understanding the effects of dielectric medium, substrate, and depth on electric fields and SERS of quasi-3D plasmonic nanostructures.
    Xu J; Kvasnička P; Idso M; Jordan RW; Gong H; Homola J; Yu Q
    Opt Express; 2011 Oct; 19(21):20493-505. PubMed ID: 21997057
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of a compact and high sensitive refractive index sensor base on metal-insulator-metal plasmonic Bragg grating.
    Binfeng Y; Guohua H; Ruohu Z; Yiping C
    Opt Express; 2014 Nov; 22(23):28662-70. PubMed ID: 25402107
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tunable plasmonic resonances based on elliptical annular aperture arrays on conducting substrates for advanced biosensing.
    Liang Y; Peng W; Li L; Qian S; Wang Q
    Opt Lett; 2015 Aug; 40(16):3909-12. PubMed ID: 26274691
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sensitivity Tuning through Additive Heterogeneous Plasmon Coupling between 3D Assembled Plasmonic Nanoparticle and Nanocup Arrays.
    Seo S; Zhou X; Liu GL
    Small; 2016 Jul; 12(25):3453-62. PubMed ID: 27206214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing Surface Sensing Sensitivity of Metallic Nanostructures using Blue-Shifted Surface Plasmon Mode and Fano Resonance.
    Lee KL; Chang CC; You ML; Pan MY; Wei PK
    Sci Rep; 2018 Jun; 8(1):9762. PubMed ID: 29950690
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-performance fiber plasmonic sensor by engineering the dispersion of hyperbolic metamaterials composed of Ag/TiO
    Hu S; Chen Y; Chen Y; Chen L; Zheng H; Azeman NH; Liu MX; Liu GS; Luo Y; Chen Z
    Opt Express; 2020 Aug; 28(17):25562-25573. PubMed ID: 32907073
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical investigations of a near-infrared plasmonic refractive index sensor with extremely high figure of merit and low loss based on the hybrid plasmonic waveguide-nanocavity system.
    Chen L; Liu Y; Yu Z; Wu D; Ma R; Zhang Y; Ye H
    Opt Express; 2016 Oct; 24(20):23260-23270. PubMed ID: 27828390
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metasurface generated polarization insensitive Fano resonance for high-performance refractive index sensing.
    Liu H; Zheng L; Ma P; Zhong Y; Liu B; Chen X; Liu H
    Opt Express; 2019 Apr; 27(9):13252-13262. PubMed ID: 31052853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.