These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 29401897)

  • 1. Artificial dielectric stepped-refractive-index lens for the terahertz region.
    Hernandez-Serrano AI; Mendis R; Reichel KS; Zhang W; Castro-Camus E; Mittleman DM
    Opt Express; 2018 Feb; 26(3):3702-3708. PubMed ID: 29401897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terahertz Artificial Dielectric Lens.
    Mendis R; Nagai M; Wang Y; Karl N; Mittleman DM
    Sci Rep; 2016 Mar; 6():23023. PubMed ID: 26973294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial dielectric polarizing-beamsplitter and isolator for the terahertz region.
    Mendis R; Nagai M; Zhang W; Mittleman DM
    Sci Rep; 2017 Jul; 7(1):5909. PubMed ID: 28725040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibiting the TE1-mode diffraction losses in terahertz parallel-plate waveguides using concave plates.
    Mbonye M; Mendis R; Mittleman DM
    Opt Express; 2012 Dec; 20(25):27800-9. PubMed ID: 23262725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial dielectric beam-scanning prism for the terahertz region.
    Strecker K; Otto M; Nagai M; O'Hara JF; Mendis R
    Sci Rep; 2023 Aug; 13(1):13793. PubMed ID: 37612366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of cylindrical terahertz metallic hollow waveguide with multiple dielectric layers.
    Sun BS; Tang XL; Zeng X; Shi YW
    Appl Opt; 2012 Oct; 51(30):7276-85. PubMed ID: 23089782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Focused terahertz waves generated by a phase velocity gradient in a parallel-plate waveguide.
    McKinney RW; Monnai Y; Mendis R; Mittleman D
    Opt Express; 2015 Oct; 23(21):27947-52. PubMed ID: 26480453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectrometer based on parallel-plate waveguides utilizing abnormal transmission.
    Lang T; Shen T; Hu J; Hong Z
    Appl Opt; 2019 Feb; 58(6):1413-1418. PubMed ID: 30874026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel-plate waveguides for terahertz-driven MeV electron bunch compression.
    Othman MAK; Hoffmann MC; Kozina ME; Wang XJ; Li RK; Nanni EA
    Opt Express; 2019 Aug; 27(17):23791-23800. PubMed ID: 31510279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low cost and long-focal-depth metallic axicon for terahertz frequencies based on parallel-plate-waveguides.
    Hernandez-Serrano AI; Pickwell-MacPherson E
    Sci Rep; 2021 Feb; 11(1):3005. PubMed ID: 33542299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slow-light application using dielectrics in a metallic terahertz plasmonic waveguide.
    Islam M; Barbhuyan ME
    J Opt Soc Am A Opt Image Sci Vis; 2020 Jun; 37(6):1053-1059. PubMed ID: 32543608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable THz notch filter with a single groove inside parallel-plate waveguides.
    Lee ES; Jeon TI
    Opt Express; 2012 Dec; 20(28):29605-12. PubMed ID: 23388787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Terahertz demonstrations of effectively two-dimensional photonic bandgap structures.
    Zhao Y; Grischkowsky D
    Opt Lett; 2006 May; 31(10):1534-6. PubMed ID: 16642163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broadband amplitude, frequency, and polarization splitter for terahertz frequencies using parallel-plate waveguide technology.
    Hernandez-Serrano AI; Mittleman DM; Pickwell-MacPherson E
    Opt Lett; 2020 Mar; 45(5):1208-1211. PubMed ID: 32108807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thin layer terahertz sensing using two-channel parallel-plate waveguides.
    Bark HS; Zha J; Lee ES; Jeon TI
    Opt Express; 2014 Jul; 22(14):16738-44. PubMed ID: 25090492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evanescent resonant mode for a T-shaped cavity in a terahertz parallel-plate waveguide.
    Wang K; Cao Q; Zhang H; Shen P; Xing L
    Appl Opt; 2018 Sep; 57(27):7967-7973. PubMed ID: 30462068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of THz coupling using a tapered parallel-plate waveguide.
    Kim SH; Lee ES; Ji YB; Jeon TI
    Opt Express; 2010 Jan; 18(2):1289-95. PubMed ID: 20173954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nature of subpicosecond terahertz pulse propagation in practical dielectric-filled parallel-plate waveguides.
    Mendis R
    Opt Lett; 2006 Sep; 31(17):2643-5. PubMed ID: 16902646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications.
    Mendis R; Mittleman DM
    Opt Express; 2009 Aug; 17(17):14839-50. PubMed ID: 19687963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-dependent birefringence of lithium triborate, LBO in the THz regime.
    Song K; Tian Z; Zhang W; Wang M
    Sci Rep; 2017 Aug; 7(1):8122. PubMed ID: 28808274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.