These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29401913)

  • 21. Asymmetrically Curved Hyperbolic Metamaterial Structure with Gradient Thicknesses for Enhanced Directional Spontaneous Emission.
    Wang L; Li S; Zhang B; Qin Y; Tian Z; Fang Y; Li Y; Liu Z; Mei Y
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):7704-7708. PubMed ID: 29436813
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hyperbolic metamaterial lens with hydrodynamic nonlocal response.
    Yan W; Mortensen NA; Wubs M
    Opt Express; 2013 Jun; 21(12):15026-36. PubMed ID: 23787690
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials.
    Naik GV; Saha B; Liu J; Saber SM; Stach EA; Irudayaraj JM; Sands TD; Shalaev VM; Boltasseva A
    Proc Natl Acad Sci U S A; 2014 May; 111(21):7546-51. PubMed ID: 24821762
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physical nature of volume plasmon polaritons in hyperbolic metamaterials.
    Zhukovsky SV; Kidwai O; Sipe JE
    Opt Express; 2013 Jun; 21(12):14982-7. PubMed ID: 23787686
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Complex k band diagrams of 3D metamaterial/photonic crystals.
    Fietz C; Urzhumov Y; Shvets G
    Opt Express; 2011 Sep; 19(20):19027-41. PubMed ID: 21996843
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials.
    Sreekanth KV; Krishna KH; De Luca A; Strangi G
    Sci Rep; 2014 Sep; 4():6340. PubMed ID: 25209102
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrafast and low power all-optical switching in the mid-infrared region based on nonlinear highly doped semiconductor hyperbolic metamaterials.
    Azmoudeh E; Farazi S
    Opt Express; 2021 Apr; 29(9):13504-13517. PubMed ID: 33985082
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Odd-mode surface plasmon polaritons supported by complementary plasmonic metamaterial.
    Gao X; Zhou L; Cui TJ
    Sci Rep; 2015 Mar; 5():9250. PubMed ID: 25783166
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasmon mode manipulation based on multi-layer hyperbolic metamaterials.
    Mao Y; Wang J; Sun S; He M; Tian S; Liang E
    Opt Express; 2022 Jun; 30(13):22353-22363. PubMed ID: 36224934
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rough metal and dielectric layers make an even better hyperbolic metamaterial absorber.
    Andryieuski A; Zhukovsky SV; Lavrinenko AV
    Opt Express; 2014 Jun; 22(12):14975-80. PubMed ID: 24977591
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineered surface Bloch waves in graphene-based hyperbolic metamaterials.
    Xiang Y; Guo J; Dai X; Wen S; Tang D
    Opt Express; 2014 Feb; 22(3):3054-62. PubMed ID: 24663596
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Van der Waals thin films of WTe
    Wang C; Huang S; Xing Q; Xie Y; Song C; Wang F; Yan H
    Nat Commun; 2020 Mar; 11(1):1158. PubMed ID: 32127535
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Launching deep subwavelength bulk plasmon polaritons through hyperbolic metamaterials for surface imaging with a tuneable ultra-short illumination depth.
    Kong W; Du W; Liu K; Wang C; Liu L; Zhao Z; Luo X
    Nanoscale; 2016 Sep; 8(38):17030-17038. PubMed ID: 27714023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancement of Self-Collimation Effect in Photonic Crystal Membranes Using Hyperbolic Metamaterials.
    Zheng Y; Wang Q; Lin M; Ouyang Z
    Nanomaterials (Basel); 2022 Feb; 12(3):. PubMed ID: 35159899
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutual mode control of short- and long-range surface plasmons.
    Takahara J; Miyata M
    Opt Express; 2013 Nov; 21(22):27402-10. PubMed ID: 24216962
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of effective media applicability for ultrathin multilayer structures.
    Sukham J; Takayama O; Mahmoodi M; Sychev S; Bogdanov A; Tavassoli SH; Lavrinenko AV; Malureanu R
    Nanoscale; 2019 Jul; 11(26):12582-12588. PubMed ID: 31231735
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Twisted Bands with Degenerate Points of Photonic Hypercrystals in Infrared Region.
    Zheng Y; Wang Q; Lin M; Bibbò L; Ouyang Z
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745323
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes.
    Kapitanova PV; Ginzburg P; Rodríguez-Fortuño FJ; Filonov DS; Voroshilov PM; Belov PA; Poddubny AN; Kivshar YS; Wurtz GA; Zayats AV
    Nat Commun; 2014; 5():3226. PubMed ID: 24526135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Magnetic hyperbolic optical metamaterials.
    Kruk SS; Wong ZJ; Pshenay-Severin E; O'Brien K; Neshev DN; Kivshar YS; Zhang X
    Nat Commun; 2016 Apr; 7():11329. PubMed ID: 27072604
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials.
    Lu D; Kan JJ; Fullerton EE; Liu Z
    Nat Nanotechnol; 2014 Jan; 9(1):48-53. PubMed ID: 24390565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.