These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 29401928)

  • 1. Efficient full-spectrum utilization, reception and conversion of solar energy by broad-band nanospiral antenna.
    Zhao H; Gao H; Cao T; Li B
    Opt Express; 2018 Jan; 26(2):A178-A191. PubMed ID: 29401928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metamaterial-Integrated High-Gain Rectenna for RF Sensing and Energy Harvesting Applications.
    Lee W; Choi SI; Kim HI; Hwang S; Jeon S; Yoon YK
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion efficiency of broad-band rectennas for solar energy harvesting applications.
    Briones E; Alda J; González FJ
    Opt Express; 2013 May; 21 Suppl 3():A412-8. PubMed ID: 24104428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic antenna effects on photochemical reactions.
    Gao S; Ueno K; Misawa H
    Acc Chem Res; 2011 Apr; 44(4):251-60. PubMed ID: 21381706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triple-Band Single-Layer Rectenna for Outdoor RF Energy Harvesting Applications.
    Boursianis AD; Papadopoulou MS; Koulouridis S; Rocca P; Georgiadis A; Tentzeris MM; Goudos SK
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34065618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient and Sensitive Electrically Small Rectenna for Ultra-Low Power RF Energy Harvesting.
    Assimonis SD; Fusco V; Georgiadis A; Samaras T
    Sci Rep; 2018 Oct; 8(1):15038. PubMed ID: 30301980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification.
    Gadalla MN; Abdel-Rahman M; Shamim A
    Sci Rep; 2014 Mar; 4():4270. PubMed ID: 24599374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized tapered dipole nanoantenna as efficient energy harvester.
    El-Toukhy YM; Hussein M; Hameed MF; Heikal AM; Abd-Elrazzak MM; Obayya SS
    Opt Express; 2016 Jul; 24(14):A1107-22. PubMed ID: 27410898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Broadband RF Differential Rectifier Integrated with Archimedean Spiral Antenna for Wireless Energy Harvesting Applications.
    Mansour M; Le Polozec X; Kanaya H
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30764579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Miniaturized UHF-Band Rectenna for Power Transmission to Deep-Body Implantable Devices.
    Abdi A; Aliakbarian H
    IEEE J Transl Eng Health Med; 2019; 7():1900311. PubMed ID: 31236319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A wide-beam, circularly polarized, three-staged, stepped-impedance, spiral antenna for direct matching to rectifier circuits.
    Sabhan D; Nesamoni VJ; Thangappan J
    Rev Sci Instrum; 2019 May; 90(5):054704. PubMed ID: 31153255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional MoS
    Zhang X; Grajal J; Vazquez-Roy JL; Radhakrishna U; Wang X; Chern W; Zhou L; Lin Y; Shen PC; Ji X; Ling X; Zubair A; Zhang Y; Wang H; Dubey M; Kong J; Dresselhaus M; Palacios T
    Nature; 2019 Feb; 566(7744):368-372. PubMed ID: 30692651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tri-Band Rectenna Dedicated to UHF RFID, GSM-1800 and UMTS-2100 Frequency Bands.
    Assogba O; Mbodji AK; Bréard A; Diallo AK; Duroc Y
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical Analysis of MIM-Based Log-Spiral Rectennas for Efficient Infrared Energy Harvesting.
    Yahyaoui A; Elsharabasy A; Yousaf J; Rmili H
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33302469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Compact Thévenin Model for a Rectenna and Its Application to an RF Harvester with MPPT.
    Gasulla M; Ripoll-Vercellone E; Reverter F
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30959869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineered nanomaterials for solar energy conversion.
    Mlinar V
    Nanotechnology; 2013 Feb; 24(4):042001. PubMed ID: 23298882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in sensitized mesoscopic solar cells.
    Grätzel M
    Acc Chem Res; 2009 Nov; 42(11):1788-98. PubMed ID: 19715294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amplification of light collection in solid-state dye-sensitized solar cells via the antenna effect through supramolecular assembly.
    Louahem M'Sabah B; Boucharef M; Warnan J; Pellegrin Y; Blart E; Lucas B; Odobel F; Bouclé J
    Phys Chem Chem Phys; 2015 Apr; 17(15):9910-8. PubMed ID: 25776534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nature-Inspired, 3D Origami Solar Steam Generator toward Near Full Utilization of Solar Energy.
    Hong S; Shi Y; Li R; Zhang C; Jin Y; Wang P
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):28517-28524. PubMed ID: 30109921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Full-spectrum volumetric solar thermal conversion via photonic nanofluids.
    Liu X; Xuan Y
    Nanoscale; 2017 Oct; 9(39):14854-14860. PubMed ID: 28737808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.