These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 29401931)

  • 1. Model-based self-optimization method for form correction in the computer controlled bonnet polishing of optical freeform surfaces.
    Cao ZC; Cheung CF; Liu MY
    Opt Express; 2018 Jan; 26(2):2065-2078. PubMed ID: 29401931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fiducial-aided on-machine positioning method for precision manufacturing of optical freeform surfaces.
    Wang S; Cheung C; Ren M; Liu M
    Opt Express; 2018 Jul; 26(15):18928-18943. PubMed ID: 30114152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient machining of non-circular freeform optics using fast tool servo assisted ultra-precision turning.
    Li Z; Fang F; Zhang X; Liu X; Gao H
    Opt Express; 2017 Oct; 25(21):25243-25256. PubMed ID: 29041194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation and characterization of ultra-precision compound freeform surfaces.
    Kong L; Ma Y; Ren M; Xu M; Cheung C
    Sci Prog; 2020; 103(1):36850419880112. PubMed ID: 31829886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined processing chain for freeform optics based on atmospheric pressure plasma processing and bonnet polishing.
    Su X; Ji P; Liu K; Walker D; Yu G; Li H; Li D; Wang B
    Opt Express; 2019 Jun; 27(13):17979-17992. PubMed ID: 31252748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and Experimental Investigation of Surface Topography Generation in Slow Tool Servo Ultra-Precision Machining of Freeform Surfaces.
    Li D; Qiao Z; Walton K; Liu Y; Xue J; Wang B; Jiang X
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30562973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machining approach of freeform optics on infrared materials via ultra-precision turning.
    Li Z; Fang F; Chen J; Zhang X
    Opt Express; 2017 Feb; 25(3):2051-2062. PubMed ID: 29519053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compensation strategy for machining optical freeform surfaces by the combined on- and off-machine measurement.
    Zhang X; Zeng Z; Liu X; Fang F
    Opt Express; 2015 Sep; 23(19):24800-10. PubMed ID: 26406680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fiducial-aided calibration of a displacement laser probing system for in-situ measurement of optical freeform surfaces on an ultra-precision fly-cutting machine.
    Wang S; Cheung CF; Kong L; Ren M
    Opt Express; 2020 Sep; 28(19):27415-27432. PubMed ID: 32988036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical freeform reflective imaging system design method with manufacturing constraints.
    Cai Z; Li J; Yu J; Huang C; Xie Y; Mao X
    Appl Opt; 2023 Aug; 62(24):6480-6490. PubMed ID: 37706842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generic fabrication solution of freeform Fresnel optics using ultra-precision turning.
    Wang Y; Wang J; Guo P
    Opt Express; 2023 Dec; 31(26):44622-44647. PubMed ID: 38178529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fiducial-Aided Robust Positioning of Optical Freeform Surfaces.
    Wang S; Cheung CF; Ren M; Liu M
    Micromachines (Basel); 2018 Jan; 9(2):. PubMed ID: 30393328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Traceable Reference Full Metrology Chain for Innovative Aspheric and Freeform Optical Surfaces Accurate at the Nanometer Level.
    Arezki Y; Su R; Heikkinen V; Leprete F; Posta P; Bitou Y; Schober C; Mehdi-Souzani C; Alzahrani BAM; Zhang X; Kondo Y; Pruss C; Ledl V; Anwer N; Bouazizi ML; Leach R; Nouira H
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33562598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative assessment of freeform polynomials as optical surface descriptions.
    Kaya I; Thompson KP; Rolland JP
    Opt Express; 2012 Sep; 20(20):22683-91. PubMed ID: 23037418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational-sampling-moiré-based on-machine alignment for freeform optics.
    Mishra V; Dubey N; Singh MP; Kumar R; Kar S; Jha S; Mayer LD; Kim D; Khan GS
    Opt Lett; 2023 Apr; 48(7):1934-1937. PubMed ID: 37221803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determinant of Dynamics and Interfacial Forces in Ultraprecision Machining of Optical Freeform Surface through Simulation-Based Analysis.
    Khaghani A; Ivanov A; Cheng K
    Micromachines (Basel); 2023 Dec; 14(12):. PubMed ID: 38138397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated manufacture of a freeform off-axis multi-reflective imaging system without optical alignment.
    Li Z; Liu X; Fang F; Zhang X; Zeng Z; Zhu L; Yan N
    Opt Express; 2018 Mar; 26(6):7625-7637. PubMed ID: 29609315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of Data Registration and Fusion Methods for Measurement of Ultra-Precision Freeform Surfaces.
    Kong LB; Ren MJ; Xu M
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28498317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compensation machining of freeform based on fast tool servo system.
    Liu J; Zhao Y; Liu K; Wang L; Li F
    PLoS One; 2023; 18(3):e0282752. PubMed ID: 36928214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Error-controlled adaptive machining of aeronautical cabin structures by laser triangulation on-machine measurement.
    Ding D; Xu F; Chen Z; Fu Y
    Rev Sci Instrum; 2024 Aug; 95(8):. PubMed ID: 39087817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.