These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29401988)

  • 41. Optimization of Nanoparticle-Based SERS Substrates through Large-Scale Realistic Simulations.
    Solís DM; Taboada JM; Obelleiro F; Liz-Marzán LM; García de Abajo FJ
    ACS Photonics; 2017 Feb; 4(2):329-337. PubMed ID: 28239616
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Vapor deposition method for sensitivity studies on engineered surface-enhanced Raman scattering-active substrates.
    Reilly TH; Corbman JD; Rowlen KL
    Anal Chem; 2007 Jul; 79(13):5078-81. PubMed ID: 17550228
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nanoimprinted Patterned Pillar Substrates for Surface-Enhanced Raman Scattering Applications.
    Chen J; Li Y; Huang K; Wang P; He L; Carter KR; Nugen SR
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):22106-13. PubMed ID: 26402032
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genetic Algorithm-Driven Surface-Enhanced Raman Spectroscopy Substrate Optimization.
    Bilgin B; Yanik C; Torun H; Onbasli MC
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835670
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A highly sensitive and recyclable SERS substrate based on Ag-nanoparticle-decorated ZnO nanoflowers in ordered arrays.
    Tao Q; Li S; Ma C; Liu K; Zhang QY
    Dalton Trans; 2015 Feb; 44(7):3447-53. PubMed ID: 25604882
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate.
    Yin HJ; Chen ZY; Zhao YM; Lv MY; Shi CA; Wu ZL; Zhang X; Liu L; Wang ML; Xu HJ
    Sci Rep; 2015 Sep; 5():14502. PubMed ID: 26412773
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cost-effective large-area Ag nanotube arrays for SERS detections: effects of nanotube geometry.
    Yang YX; Chu JP
    Nanotechnology; 2021 Sep; 32(47):. PubMed ID: 34284366
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Metallic nanocrystals near ultrasmooth metallic films for surface-enhanced Raman scattering application.
    Tang J; Ponizovskaya EV; Bratkovsky AM; Stewart DR; Li Z; Williams RS
    Nanotechnology; 2008 Oct; 19(41):415702. PubMed ID: 21832653
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Highly ordered arrays of particle-in-bowl plasmonic nanostructures for surface-enhanced raman scattering.
    Li X; Zhang Y; Shen ZX; Fan HJ
    Small; 2012 Aug; 8(16):2548-54. PubMed ID: 22674732
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Wavelength-scanned surface-enhanced Raman excitation spectroscopy.
    McFarland AD; Young MA; Dieringer JA; Van Duyne RP
    J Phys Chem B; 2005 Jun; 109(22):11279-85. PubMed ID: 16852377
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Naturally inspired SERS substrates fabricated by photocatalytically depositing silver nanoparticles on cicada wings.
    Tanahashi I; Harada Y
    Nanoscale Res Lett; 2014; 9(1):298. PubMed ID: 24959110
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Surface-enhanced Raman nanodomes.
    Choi CJ; Xu Z; Wu HY; Liu GL; Cunningham BT
    Nanotechnology; 2010 Oct; 21(41):415301. PubMed ID: 20834120
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Fabrication of two dimensional silver cavity array and its application in SERS detection].
    Gu XF; Shi J; Jiang GQ; Jiang GM; Tian S
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Apr; 33(4):987-90. PubMed ID: 23841413
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gold nanopillar arrays as biosensors fabricated by electron beam lithography combined with electroplating.
    Liu J; Zhang S; Ma Y; Shao J; Lu B; Chen Y
    Appl Opt; 2015 Mar; 54(9):2537-42. PubMed ID: 25968546
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A durable surface-enhanced Raman scattering substrate: ultrathin carbon layer encapsulated Ag nanoparticle arrays on indium-tin-oxide glass.
    Bian J; Li Q; Huang C; Guo Y; Zaw M; Zhang RQ
    Phys Chem Chem Phys; 2015 Jun; 17(22):14849-55. PubMed ID: 25980466
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Engineering photonic-plasmonic coupling in metal nanoparticle necklaces.
    Pasquale AJ; Reinhard BM; Dal Negro L
    ACS Nano; 2011 Aug; 5(8):6578-85. PubMed ID: 21739951
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Porous GaN as a template to produce surface-enhanced Raman scattering-active surfaces.
    Williamson TL; Guo X; Zukoski A; Sood A; Díaz DJ; Bohn PW
    J Phys Chem B; 2005 Nov; 109(43):20186-91. PubMed ID: 16853609
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering.
    Payton JL; Morton SM; Moore JE; Jensen L
    Acc Chem Res; 2014 Jan; 47(1):88-99. PubMed ID: 23965411
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Morphological and Near-Field Properties of Silver Columnar Thin Film for Surface-Enhanced Raman Scattering.
    Liao Y; Huang J; Huang X; Jiang S
    J Nanosci Nanotechnol; 2018 Apr; 18(4):2803-2810. PubMed ID: 29442960
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Geometrical and morphological optimizations of plasmonic nanoarrays for high-performance SERS detection.
    Li WQ; Wang G; Zhang XN; Geng HP; Shen JL; Wang LS; Zhao J; Xu LF; Zhang LJ; Wu YQ; Tai RZ; Chen G
    Nanoscale; 2015 Oct; 7(37):15487-94. PubMed ID: 26274048
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.