These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 29402045)
1. Optical and thermal analysis of the light-heat conversion process employing an antenna-based hybrid plasmonic waveguide for HAMR. Abadía N; Bello F; Zhong C; Flanigan P; McCloskey DM; Wolf C; Krichevsky A; Wolf D; Zong F; Samani A; Plant DV; Donegan JF Opt Express; 2018 Jan; 26(2):1752-1765. PubMed ID: 29402045 [TBL] [Abstract][Full Text] [Related]
2. Effective heat dissipation in an adiabatic near-field transducer for HAMR. Zhong C; Flanigan P; Abadía N; Bello F; Jennings BD; Atcheson G; Li J; Zheng JY; Wang JJ; Hobbs R; McCloskey D; Donegan JF Opt Express; 2018 Jul; 26(15):18842-18854. PubMed ID: 30114145 [TBL] [Abstract][Full Text] [Related]
3. Visualizing the bidirectional optical transfer function for near-field enhancement in waveguide coupled plasmonic transducers. Otto LM; Ogletree DF; Aloni S; Staffaroni M; Stipe BC; Hammack AT Sci Rep; 2018 Apr; 8(1):5761. PubMed ID: 29636534 [TBL] [Abstract][Full Text] [Related]
4. Novel aluminum near field transducer and highly integrated micro-nano-optics design for heat-assisted ultra-high-density magnetic recording. Miao L; Stoddart PR; Hsiang TY Nanotechnology; 2014 Jul; 25(29):295202. PubMed ID: 24981413 [TBL] [Abstract][Full Text] [Related]
6. High field enhancement between transducer and resonant antenna for application in bit patterned heat-assisted magnetic recording. Gosciniak J; Rasras M Opt Express; 2019 Mar; 27(6):8605-8611. PubMed ID: 31052675 [TBL] [Abstract][Full Text] [Related]
7. Design of a monopole-antenna-based resonant nanocavity for detection of optical power from hybrid plasmonic waveguides. Ooi KJ; Bai P; Gu MX; Ang LK Opt Express; 2011 Aug; 19(18):17075-85. PubMed ID: 21935068 [TBL] [Abstract][Full Text] [Related]
8. Subdiffraction light focusing using a cross sectional ridge waveguide nanoscale aperture. Traverso L; Datta A; Xu X Opt Express; 2016 Nov; 24(23):26016-26023. PubMed ID: 27857340 [TBL] [Abstract][Full Text] [Related]
9. Numerical investigation of a light delivery device using metal/insulator/metal with a 3D linear taper waveguide and an input grating for heat-assisted magnetic recording. Wongpanya K; Pijitrojana W Appl Opt; 2021 Dec; 60(36):11001-11009. PubMed ID: 35201087 [TBL] [Abstract][Full Text] [Related]
10. Polarization rotation and coupling between silicon waveguide and hybrid plasmonic waveguide. Kim S; Qi M Opt Express; 2015 Apr; 23(8):9968-78. PubMed ID: 25969038 [TBL] [Abstract][Full Text] [Related]
11. Plasmonic waveguides with low polarization dependence. Jin L; Chen Q; Song S Opt Lett; 2013 Aug; 38(16):3078-81. PubMed ID: 24104653 [TBL] [Abstract][Full Text] [Related]
12. Highly efficient graphene-on-gap modulator by employing the hybrid plasmonic effect. Peng X; Hao R; Ye Z; Qin P; Chen W; Chen H; Jin X; Yang D; Li E Opt Lett; 2017 May; 42(9):1736-1739. PubMed ID: 28454148 [TBL] [Abstract][Full Text] [Related]
13. Split ring resonator as a nanoscale optical transducer for heat-assisted magnetic recording. Datta A; Zeng Z; Xu X Opt Express; 2019 Sep; 27(20):28264-28278. PubMed ID: 31684582 [TBL] [Abstract][Full Text] [Related]
14. Compact on-chip plasmonic light concentration based on a hybrid photonic-plasmonic structure. Luo Y; Chamanzar M; Adibi A Opt Express; 2013 Jan; 21(2):1898-910. PubMed ID: 23389173 [TBL] [Abstract][Full Text] [Related]
15. Efficient light coupling between dielectric slot waveguide and plasmonic slot waveguide. Yang R; Wahsheh RA; Lu Z; Abushagur MA Opt Lett; 2010 Mar; 35(5):649-51. PubMed ID: 20195307 [TBL] [Abstract][Full Text] [Related]
16. Broadband coupler between silicon waveguide and hybrid plasmonic waveguide. Song Y; Wang J; Li Q; Yan M; Qiu M Opt Express; 2010 Jun; 18(12):13173-9. PubMed ID: 20588445 [TBL] [Abstract][Full Text] [Related]
17. Power delivery and self-heating in nanoscale near field transducer for heat-assisted magnetic recording. Zhou N; Traverso LM; Xu X Nanotechnology; 2015 Mar; 26(13):134001. PubMed ID: 25759907 [TBL] [Abstract][Full Text] [Related]