These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 29402081)

  • 41. Evaluation of electrical characteristics of biological tissue with electrical impedance spectroscopy.
    Yao J; Wang L; Liu K; Wu H; Wang H; Huang J; Li J
    Electrophoresis; 2020 Sep; 41(16-17):1425-1432. PubMed ID: 31863489
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quantification of the specific membrane capacitance of single cells using a microfluidic device and impedance spectroscopy measurement.
    Tan Q; Ferrier GA; Chen BK; Wang C; Sun Y
    Biomicrofluidics; 2012 Sep; 6(3):34112. PubMed ID: 23940502
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vitro analysis of various cell lines responses to electroporative electric pulses by means of electrical impedance spectroscopy.
    García-Sánchez T; Bragós R; Mir LM
    Biosens Bioelectron; 2018 Oct; 117():207-216. PubMed ID: 29906768
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lab-on-chip for liquid biopsy (LoC-LB) based on dielectrophoresis.
    Mathew B; Alazzam A; Khashan S; Abutayeh M
    Talanta; 2017 Mar; 164():608-611. PubMed ID: 28107980
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrical Impedance Spectroscopy of plant cells in aqueous biological buffer solutions and their modelling using a unified electrical equivalent circuit over a wide frequency range: 4Hz to 20 GHz.
    Kadan-Jamal K; Sophocleous M; Jog A; Desagani D; Teig-Sussholz O; Georgiou J; Avni A; Shacham-Diamand Y
    Biosens Bioelectron; 2020 Nov; 168():112485. PubMed ID: 32896772
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrical impedance spectroscopy of the human prostate.
    Halter RJ; Hartov A; Heaney JA; Paulsen KD; Schned AR
    IEEE Trans Biomed Eng; 2007 Jul; 54(7):1321-7. PubMed ID: 17605363
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Battery-powered portable instrument system for single-cell trapping, impedance measurements, and modeling analyses.
    Tsai SL; Chiang Y; Wang MH; Chen MK; Jang LS
    Electrophoresis; 2014 Aug; 35(16):2392-400. PubMed ID: 24610717
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Towards optimization of plant cell detection in suspensions using impedance-based analyses and the unified equivalent circuit model.
    Kadan-Jamal K; Jog A; Sophocleous M; Georgiou J; Avni A; Shacham-Diamand Y
    Sci Rep; 2021 Sep; 11(1):19310. PubMed ID: 34588592
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of subcellular morphology of single yeast cells using high frequency microfluidic impedance cytometer.
    Haandbæk N; Bürgel SC; Heer F; Hierlemann A
    Lab Chip; 2014 Jan; 14(2):369-77. PubMed ID: 24264643
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrical impedance characterization of cell growth on interdigitated microelectrode array.
    Lee GH; Pyun JC; Cho S
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8342-6. PubMed ID: 25958525
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A high-throughput flow cytometry-on-a-CMOS platform for single-cell dielectric spectroscopy at microwave frequencies.
    Chien JC; Ameri A; Yeh EC; Killilea AN; Anwar M; Niknejad AM
    Lab Chip; 2018 Jul; 18(14):2065-2076. PubMed ID: 29872834
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microelectrode-based dielectric spectroscopy of glucose effect on erythrocytes.
    Colella L; Beyer C; Fröhlich J; Talary M; Renaud P
    Bioelectrochemistry; 2012 Jun; 85():14-20. PubMed ID: 22197549
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In-cycle myocardium tissue electrical impedance monitoring using broadband impedance spectroscopy.
    Sanchez B; Vandersteen G; Rosell-Ferrer J; Cinca J; Bragos R
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2518-21. PubMed ID: 22254853
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Robustness study of the different immittance spectra and frequency ranges in bioimpedance spectroscopy analysis for assessment of total body composition.
    Buendia R; Seoane F; Bosaeus I; Gil-Pita R; Johannsson G; Ellegård L; Lindecrantz K
    Physiol Meas; 2014 Jul; 35(7):1373-95. PubMed ID: 24854791
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Impedance spectroscopy of alpha-beta tubulin heterodimer suspensions.
    Sanabria H; Miller JH; Mershin A; Luduena RF; Kolomenski AA; Schuessler HA; Nanopoulos DV
    Biophys J; 2006 Jun; 90(12):4644-50. PubMed ID: 16732057
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microfabricated thin film impedance sensor & AC impedance measurements.
    Yu J; Liu CC
    Sensors (Basel); 2010; 10(6):5845-58. PubMed ID: 22219690
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design and validation of a multi-electrode bioimpedance system for enhancing spatial resolution of cellular impedance studies.
    Alexander FA; Celestin M; Price DT; Nanjundan M; Bhansali S
    Analyst; 2013 Jul; 138(13):3728-34. PubMed ID: 23689543
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reduction of electrode polarization capacitance in low-frequency impedance spectroscopy by using mesh electrodes.
    Padmaraj D; Miller JH; Wosik J; Zagozdzon-Wosik W
    Biosens Bioelectron; 2011 Nov; 29(1):13-7. PubMed ID: 21872464
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrical properties characterization of single yeast cells by dielectrophoretic motion and electro-rotation.
    Huang L; Fang Q
    Biomed Microdevices; 2021 Feb; 23(1):11. PubMed ID: 33547978
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Study of Real-Time Spatial and Temporal Behavior of Bacterial Biofilms Using 2-D Impedance Spectroscopy.
    Begly C; Ackart D; Mylius J; Basaraba R; Chicco AJ; Chen TW
    IEEE Trans Biomed Circuits Syst; 2020 Oct; 14(5):1051-1064. PubMed ID: 32746361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.