These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 29402189)
1. Simplified Footprint-Free Cas9/CRISPR Editing of Cardiac-Associated Genes in Human Pluripotent Stem Cells. Kondrashov A; Duc Hoang M; Smith JGW; Bhagwan JR; Duncan G; Mosqueira D; Munoz MB; Vo NTN; Denning C Stem Cells Dev; 2018 Mar; 27(6):391-404. PubMed ID: 29402189 [TBL] [Abstract][Full Text] [Related]
2. Determining the Pathogenicity of a Genomic Variant of Uncertain Significance Using CRISPR/Cas9 and Human-Induced Pluripotent Stem Cells. Ma N; Zhang JZ; Itzhaki I; Zhang SL; Chen H; Haddad F; Kitani T; Wilson KD; Tian L; Shrestha R; Wu H; Lam CK; Sayed N; Wu JC Circulation; 2018 Dec; 138(23):2666-2681. PubMed ID: 29914921 [TBL] [Abstract][Full Text] [Related]
3. Footprint-free gene mutation correction in induced pluripotent stem cell (iPSC) derived from recessive dystrophic epidermolysis bullosa (RDEB) using the CRISPR/Cas9 and piggyBac transposon system. Itoh M; Kawagoe S; Tamai K; Nakagawa H; Asahina A; Okano HJ J Dermatol Sci; 2020 Jun; 98(3):163-172. PubMed ID: 32376152 [TBL] [Abstract][Full Text] [Related]
4. CRISPR/Cas9 Genome Editing: A Promising Tool for Therapeutic Applications of Induced Pluripotent Stem Cells. Zhang Y; Sastre D; Wang F Curr Stem Cell Res Ther; 2018; 13(4):243-251. PubMed ID: 29446747 [TBL] [Abstract][Full Text] [Related]
5. Design and Validation of CRISPR/Cas9 Systems for Targeted Gene Modification in Induced Pluripotent Stem Cells. Lee CM; Zhu H; Davis TH; Deshmukh H; Bao G Methods Mol Biol; 2017; 1498():3-21. PubMed ID: 27709565 [TBL] [Abstract][Full Text] [Related]
6. Highly Efficient and Marker-free Genome Editing of Human Pluripotent Stem Cells by CRISPR-Cas9 RNP and AAV6 Donor-Mediated Homologous Recombination. Martin RM; Ikeda K; Cromer MK; Uchida N; Nishimura T; Romano R; Tong AJ; Lemgart VT; Camarena J; Pavel-Dinu M; Sindhu C; Wiebking V; Vaidyanathan S; Dever DP; Bak RO; Laustsen A; Lesch BJ; Jakobsen MR; Sebastiano V; Nakauchi H; Porteus MH Cell Stem Cell; 2019 May; 24(5):821-828.e5. PubMed ID: 31051134 [TBL] [Abstract][Full Text] [Related]
7. Genome editing of hPSCs: Recent progress in hPSC-based disease modeling for understanding disease mechanisms. Choi DK; Kim YK; HoonYu J; Min SH; Park SW Prog Mol Biol Transl Sci; 2021; 181():271-287. PubMed ID: 34127196 [TBL] [Abstract][Full Text] [Related]
8. CRISPR/Cas9 Gene editing of RyR2 in human stem cell-derived cardiomyocytes provides a novel approach in investigating dysfunctional Ca Wei H; Zhang XH; Clift C; Yamaguchi N; Morad M Cell Calcium; 2018 Jul; 73():104-111. PubMed ID: 29730419 [TBL] [Abstract][Full Text] [Related]
10. Studying Pathogenetic Contribution of a Variant of Unknown Significance, p.M659I (c.1977G > A) in MYH7, to the Development of Hypertrophic Cardiomyopathy Using CRISPR/Cas9-Engineered Isogenic Induced Pluripotent Stem Cells. Pavlova SV; Shulgina AE; Zakian SM; Dementyeva EV Int J Mol Sci; 2024 Aug; 25(16):. PubMed ID: 39201382 [TBL] [Abstract][Full Text] [Related]
11. Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies. Wang G; Yang L; Grishin D; Rios X; Ye LY; Hu Y; Li K; Zhang D; Church GM; Pu WT Nat Protoc; 2017 Jan; 12(1):88-103. PubMed ID: 27929521 [TBL] [Abstract][Full Text] [Related]
12. CRISPR Del/Rei: a simple, flexible, and efficient pipeline for scarless genome editing. Feuer KL; Wahbeh MH; Yovo C; Rabie E; Lam AN; Abdollahi S; Young LJ; Rike B; Umamageswaran A; Avramopoulos D Sci Rep; 2022 Jul; 12(1):11928. PubMed ID: 35831384 [TBL] [Abstract][Full Text] [Related]
13. hPSC gene editing for cardiac disease therapy. Saleem A; Abbas MK; Wang Y; Lan F Pflugers Arch; 2022 Nov; 474(11):1123-1132. PubMed ID: 36163402 [TBL] [Abstract][Full Text] [Related]
14. A high efficiency precision genome editing method with CRISPR in iPSCs. Singh A; Smedley GD; Rose JG; Fredriksen K; Zhang Y; Li L; Yuan SH Sci Rep; 2024 Apr; 14(1):9933. PubMed ID: 38688988 [TBL] [Abstract][Full Text] [Related]
15. Developing CRISPR/Cas9-Mediated Fluorescent Reporter Human Pluripotent Stem-Cell Lines for High-Content Screening. Vojnits K; Nakanishi M; Porras D; Kim Y; Feng Z; Golubeva D; Bhatia M Molecules; 2022 Apr; 27(8):. PubMed ID: 35458632 [TBL] [Abstract][Full Text] [Related]
16. Generation of Human Isogenic Induced Pluripotent Stem Cell Lines with CRISPR Prime Editing. Bonnycastle LL; Swift AJ; Mansell EC; Lee A; Winnicki E; Li ES; Robertson CC; Parsons VA; Huynh T; Krilow C; Mohlke KL; Erdos MR; Narisu N; Collins FS CRISPR J; 2024 Feb; 7(1):53-67. PubMed ID: 38353623 [TBL] [Abstract][Full Text] [Related]
17. Correction of Hirschsprung-Associated Mutations in Human Induced Pluripotent Stem Cells Via Clustered Regularly Interspaced Short Palindromic Repeats/Cas9, Restores Neural Crest Cell Function. Lai FP; Lau ST; Wong JK; Gui H; Wang RX; Zhou T; Lai WH; Tse HF; Tam PK; Garcia-Barcelo MM; Ngan ES Gastroenterology; 2017 Jul; 153(1):139-153.e8. PubMed ID: 28342760 [TBL] [Abstract][Full Text] [Related]
18. Recent Advances in CRISPR/Cas9 Delivery Approaches for Therapeutic Gene Editing of Stem Cells. Lotfi M; Morshedi Rad D; Mashhadi SS; Ashouri A; Mojarrad M; Mozaffari-Jovin S; Farrokhi S; Hashemi M; Lotfi M; Ebrahimi Warkiani M; Abbaszadegan MR Stem Cell Rev Rep; 2023 Nov; 19(8):2576-2596. PubMed ID: 37723364 [TBL] [Abstract][Full Text] [Related]
19. Development and application of CRISPR/Cas9 technologies in genomic editing. Zhang C; Quan R; Wang J Hum Mol Genet; 2018 Aug; 27(R2):R79-R88. PubMed ID: 29659822 [TBL] [Abstract][Full Text] [Related]
20. Advance genome editing technologies in the treatment of human diseases: CRISPR therapy (Review). Alagoz M; Kherad N Int J Mol Med; 2020 Aug; 46(2):521-534. PubMed ID: 32467995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]