BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 29402215)

  • 1. Adaptive genomic evolution of opsins reveals that early mammals flourished in nocturnal environments.
    Borges R; Johnson WE; O'Brien SJ; Gomes C; Heesy CP; Antunes A
    BMC Genomics; 2018 Feb; 19(1):121. PubMed ID: 29402215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene loss, adaptive evolution and the co-evolution of plumage coloration genes with opsins in birds.
    Borges R; Khan I; Johnson WE; Gilbert MT; Zhang G; Jarvis ED; O'Brien SJ; Antunes A
    BMC Genomics; 2015 Oct; 16():751. PubMed ID: 26438339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nocturnal bottleneck and the evolution of mammalian vision.
    Heesy CP; Hall MI
    Brain Behav Evol; 2010; 75(3):195-203. PubMed ID: 20733295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Archelosaurian Color Vision, Parietal Eye Loss, and the Crocodylian Nocturnal Bottleneck.
    Emerling CA
    Mol Biol Evol; 2017 Mar; 34(3):666-676. PubMed ID: 27940498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral shifts of mammalian ultraviolet-sensitive pigments (short wavelength-sensitive opsin 1) are associated with eye length and photic niche evolution.
    Emerling CA; Huynh HT; Nguyen MA; Meredith RW; Springer MS
    Proc Biol Sci; 2015 Nov; 282(1819):. PubMed ID: 26582021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Data Support an Early Shift to an Intermediate-Light Niche in the Evolution of Mammals.
    Liu Y; Chi H; Li L; Rossiter SJ; Zhang S
    Mol Biol Evol; 2018 May; 35(5):1130-1134. PubMed ID: 29462332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rates of Molecular Evolution Suggest Natural History of Life History Traits and a Post-K-Pg Nocturnal Bottleneck of Placentals.
    Wu J; Yonezawa T; Kishino H
    Curr Biol; 2017 Oct; 27(19):3025-3033.e5. PubMed ID: 28966093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The evolution of the green-light-sensitive visual opsin genes (RH2) in teleost fishes.
    Musilova Z; Cortesi F
    Vision Res; 2023 May; 206():108204. PubMed ID: 36868011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The evolution of color vision in nocturnal mammals.
    Zhao H; Rossiter SJ; Teeling EC; Li C; Cotton JA; Zhang S
    Proc Natl Acad Sci U S A; 2009 Jun; 106(22):8980-5. PubMed ID: 19470491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Daily activity patterns influence retinal morphology, signatures of selection, and spectral tuning of opsin genes in colubrid snakes.
    Hauzman E; Bonci DMO; Suárez-Villota EY; Neitz M; Ventura DF
    BMC Evol Biol; 2017 Dec; 17(1):249. PubMed ID: 29228925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recruitment of Rod Photoreceptors from Short-Wavelength-Sensitive Cones during the Evolution of Nocturnal Vision in Mammals.
    Kim JW; Yang HJ; Oel AP; Brooks MJ; Jia L; Plachetzki DC; Li W; Allison WT; Swaroop A
    Dev Cell; 2016 Jun; 37(6):520-32. PubMed ID: 27326930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nocturnal light environments influence color vision and signatures of selection on the OPN1SW opsin gene in nocturnal lemurs.
    Veilleux CC; Louis EE; Bolnick DA
    Mol Biol Evol; 2013 Jun; 30(6):1420-37. PubMed ID: 23519316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular ecology and adaptation of visual photopigments in craniates.
    Davies WI; Collin SP; Hunt DM
    Mol Ecol; 2012 Jul; 21(13):3121-58. PubMed ID: 22650357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conservation, Duplication, and Divergence of Five Opsin Genes in Insect Evolution.
    Feuda R; Marlétaz F; Bentley MA; Holland PW
    Genome Biol Evol; 2016 Feb; 8(3):579-87. PubMed ID: 26865071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity and Molecular Evolution of Nonvisual Opsin Genes across Environmental, Developmental, and Morphological Adaptations in Frogs.
    Boyette JL; Bell RC; Fujita MK; Thomas KN; Streicher JW; Gower DJ; Schott RK
    Mol Biol Evol; 2024 Jun; 41(6):. PubMed ID: 38736374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary Constraint on Visual and Nonvisual Mammalian Opsins.
    Upton BA; Díaz NM; Gordon SA; Van Gelder RN; Buhr ED; Lang RA
    J Biol Rhythms; 2021 Apr; 36(2):109-126. PubMed ID: 33765865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Avian Binocularity and Adaptation to Nocturnal Environments: Genomic Insights from a Highly Derived Visual Phenotype.
    Borges R; Fonseca J; Gomes C; Johnson WE; O'Brien SJ; Zhang G; Gilbert MTP; Jarvis ED; Antunes A
    Genome Biol Evol; 2019 Aug; 11(8):2244-2255. PubMed ID: 31386143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evolutionary history and spectral tuning of vertebrate visual opsins.
    Hagen JFD; Roberts NS; Johnston RJ
    Dev Biol; 2023 Jan; 493():40-66. PubMed ID: 36370769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous Expression of UV and Violet SWS1 Opsins Expands the Visual Palette in a Group of Freshwater Snakes.
    Hauzman E; Pierotti MER; Bhattacharyya N; Tashiro JH; Yovanovich CAM; Campos PF; Ventura DF; Chang BSW
    Mol Biol Evol; 2021 Dec; 38(12):5225-5240. PubMed ID: 34562092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel evolution of opsin visual pigments in hawkmoths by tuning of spectral sensitivities during transition from a nocturnal to a diurnal ecology.
    Akiyama T; Uchiyama H; Yajima S; Arikawa K; Terai Y
    J Exp Biol; 2022 Dec; 225(23):. PubMed ID: 36408938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.