BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 29402215)

  • 21. Ancestral loss of short wave-sensitive cone visual pigment in lorisiform prosimians, contrasting with its strict conservation in other prosimians.
    Kawamura S; Kubotera N
    J Mol Evol; 2004 Mar; 58(3):314-21. PubMed ID: 15045486
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Signatures of functional constraint at aye-aye opsin genes: the potential of adaptive color vision in a nocturnal primate.
    Perry GH; Martin RD; Verrelli BC
    Mol Biol Evol; 2007 Sep; 24(9):1963-70. PubMed ID: 17575304
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Visual Opsin Gene Repertoires of Teleost Fishes: Evolution, Ecology, and Function.
    Musilova Z; Salzburger W; Cortesi F
    Annu Rev Cell Dev Biol; 2021 Oct; 37():441-468. PubMed ID: 34351785
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The evolution and expression of the moth visual opsin family.
    Xu P; Lu B; Xiao H; Fu X; Murphy RW; Wu K
    PLoS One; 2013; 8(10):e78140. PubMed ID: 24205129
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolution of colour vision in mammals.
    Jacobs GH
    Philos Trans R Soc Lond B Biol Sci; 2009 Oct; 364(1531):2957-67. PubMed ID: 19720656
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The rises and falls of opsin genes in 59 ray-finned fish genomes and their implications for environmental adaptation.
    Lin JJ; Wang FY; Li WH; Wang TY
    Sci Rep; 2017 Nov; 7(1):15568. PubMed ID: 29138475
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of ecological factors in shaping bat cone opsin evolution.
    Gutierrez EA; Schott RK; Preston MW; Loureiro LO; Lim BK; Chang BSW
    Proc Biol Sci; 2018 Apr; 285(1876):. PubMed ID: 29618549
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chromosome-level assembly of southern catfish (silurus meridionalis) provides insights into visual adaptation to nocturnal and benthic lifestyles.
    Zheng S; Shao F; Tao W; Liu Z; Long J; Wang X; Zhang S; Zhao Q; Carleton KL; Kocher TD; Jin L; Wang Z; Peng Z; Wang D; Zhang Y
    Mol Ecol Resour; 2021 Jul; 21(5):1575-1592. PubMed ID: 33503304
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of the opsin repertoire in the tardigrade Hypsibius dujardini provides insights into the evolution of opsin genes in panarthropoda.
    Hering L; Mayer G
    Genome Biol Evol; 2014 Sep; 6(9):2380-91. PubMed ID: 25193307
    [TBL] [Abstract][Full Text] [Related]  

  • 30. S cones: Evolution, retinal distribution, development, and spectral sensitivity.
    Hunt DM; Peichl L
    Vis Neurosci; 2014 Mar; 31(2):115-38. PubMed ID: 23895771
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In the four-eyed fish (Anableps anableps), the regions of the retina exposed to aquatic and aerial light do not express the same set of opsin genes.
    Owens GL; Rennison DJ; Allison WT; Taylor JS
    Biol Lett; 2012 Feb; 8(1):86-9. PubMed ID: 21775314
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolution of colour vision in vertebrates.
    Bowmaker JK
    Eye (Lond); 1998; 12 ( Pt 3b)():541-7. PubMed ID: 9775215
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Opsin Repertoire and Expression Patterns in Horseshoe Crabs: Evidence from the Genome of Limulus polyphemus (Arthropoda: Chelicerata).
    Battelle BA; Ryan JF; Kempler KE; Saraf SR; Marten CE; Warren WC; Minx PJ; Montague MJ; Green PJ; Schmidt SA; Fulton L; Patel NH; Protas ME; Wilson RK; Porter ML
    Genome Biol Evol; 2016 Jun; 8(5):1571-89. PubMed ID: 27189985
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Losses of functional opsin genes, short-wavelength cone photopigments, and color vision--a significant trend in the evolution of mammalian vision.
    Jacobs GH
    Vis Neurosci; 2013 Mar; 30(1-2):39-53. PubMed ID: 23286388
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Verriest Lecture 2009: recent progress in understanding mammalian color vision.
    Jacobs GH
    Ophthalmic Physiol Opt; 2010 Sep; 30(5):422-34. PubMed ID: 20883325
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diversified Mammalian Visuasl Adaptations to Bright- or Dim-Light Environments.
    Gai Y; Tian R; Liu F; Mu Y; Shan L; Irwin DM; Liu Y; Xu S; Yang G
    Mol Biol Evol; 2023 Apr; 40(4):. PubMed ID: 36929909
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression and Evolution of Short Wavelength Sensitive Opsins in Colugos: A Nocturnal Lineage That Informs Debate on Primate Origins.
    Moritz GL; Lim NT; Neitz M; Peichl L; Dominy NJ
    Evol Biol; 2013; 40(4):542-553. PubMed ID: 24293738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visual system evolution and the nature of the ancestral snake.
    Simões BF; Sampaio FL; Jared C; Antoniazzi MM; Loew ER; Bowmaker JK; Rodriguez A; Hart NS; Hunt DM; Partridge JC; Gower DJ
    J Evol Biol; 2015 Jul; 28(7):1309-20. PubMed ID: 26012745
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution of phototransduction, vertebrate photoreceptors and retina.
    Lamb TD
    Prog Retin Eye Res; 2013 Sep; 36():52-119. PubMed ID: 23792002
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The nocturnal bottleneck and the evolution of activity patterns in mammals.
    Gerkema MP; Davies WI; Foster RG; Menaker M; Hut RA
    Proc Biol Sci; 2013 Aug; 280(1765):20130508. PubMed ID: 23825205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.