These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 29402310)

  • 1. fNIRS-based Neurorobotic Interface for gait rehabilitation.
    Khan RA; Naseer N; Qureshi NK; Noori FM; Nazeer H; Khan MU
    J Neuroeng Rehabil; 2018 Feb; 15(1):7. PubMed ID: 29402310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analyzing Classification Performance of fNIRS-BCI for Gait Rehabilitation Using Deep Neural Networks.
    Hamid H; Naseer N; Nazeer H; Khan MJ; Khan RA; Shahbaz Khan U
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Different Classification Techniques for Two-Class Functional Near-Infrared Spectroscopy-Based Brain-Computer Interface.
    Naseer N; Qureshi NK; Noori FM; Hong KS
    Comput Intell Neurosci; 2016; 2016():5480760. PubMed ID: 27725827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LASSO Homotopy-Based Sparse Representation Classification for fNIRS-BCI.
    Gulraiz A; Naseer N; Nazeer H; Khan MJ; Khan RA; Shahbaz Khan U
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of Individual Finger Movements from Right Hand Using fNIRS Signals.
    Khan H; Noori FM; Yazidi A; Uddin MZ; Khan MNA; Mirtaheri P
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal feature selection from fNIRS signals using genetic algorithms for BCI.
    Noori FM; Naseer N; Qureshi NK; Nazeer H; Khan RA
    Neurosci Lett; 2017 Apr; 647():61-66. PubMed ID: 28336339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing classification accuracy of fNIRS-BCI using features acquired from vector-based phase analysis.
    Nazeer H; Naseer N; Khan RA; Noori FM; Qureshi NK; Khan US; Khan MJ
    J Neural Eng; 2020 Oct; 17(5):056025. PubMed ID: 33055382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lower Limb Movement Preparation in Chronic Stroke: A Pilot Study Toward an fNIRS-BCI for Gait Rehabilitation.
    Rea M; Rana M; Lugato N; Terekhin P; Gizzi L; Brötz D; Fallgatter A; Birbaumer N; Sitaram R; Caria A
    Neurorehabil Neural Repair; 2014 Jul; 28(6):564-75. PubMed ID: 24482298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single trial classification of fNIRS-based brain-computer interface mental arithmetic data: a comparison between different classifiers.
    Bauernfeind G; Steyrl D; Brunner C; Muller-Putz GR
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2004-7. PubMed ID: 25570376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrimination of Two-Class Motor Imagery in a fNIRS Based Brain Computer Interface.
    Moslehi AH; Bagheri M; Ludwig AM; Davies TC
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4051-4054. PubMed ID: 33018888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding of Walking Imagery and Idle State Using Sparse Representation Based on fNIRS.
    Li H; Gong A; Zhao L; Zhang W; Wang F; Fu Y
    Comput Intell Neurosci; 2021; 2021():6614112. PubMed ID: 33688336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Between-Subject fNIRS-BCI Study on Detecting Self-Regulated Intention During Walking.
    Li C; Su M; Xu J; Jin H; Sun L
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):531-540. PubMed ID: 31940543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification of motor imagery and execution signals with population-level feature sets: implications for probe design in fNIRS based BCI.
    Erdoĝan SB; Özsarfati E; Dilek B; Kadak KS; Hanoĝlu L; Akın A
    J Neural Eng; 2019 Apr; 16(2):026029. PubMed ID: 30634177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of functional near-infrared spectroscopy signals corresponding to the right- and left-wrist motor imagery for development of a brain-computer interface.
    Naseer N; Hong KS
    Neurosci Lett; 2013 Oct; 553():84-9. PubMed ID: 23973334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. fNIRS-Based Upper Limb Motion Intention Recognition Using an Artificial Neural Network for Transhumeral Amputees.
    Sattar NY; Kausar Z; Usama SA; Farooq U; Shah MF; Muhammad S; Khan R; Badran M
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. fNIRS-based brain-computer interfaces: a review.
    Naseer N; Hong KS
    Front Hum Neurosci; 2015; 9():3. PubMed ID: 25674060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of fNIRS data with LDA and SVM: a proof-of-concept for application in infant studies.
    Gemignani J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():824-827. PubMed ID: 34891417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Online binary decision decoding using functional near-infrared spectroscopy for the development of brain-computer interface.
    Naseer N; Hong MJ; Hong KS
    Exp Brain Res; 2014 Feb; 232(2):555-64. PubMed ID: 24258529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. fNIRS-GANs: data augmentation using generative adversarial networks for classifying motor tasks from functional near-infrared spectroscopy.
    Nagasawa T; Sato T; Nambu I; Wada Y
    J Neural Eng; 2020 Feb; 17(1):016068. PubMed ID: 31945755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding four different sound-categories in the auditory cortex using functional near-infrared spectroscopy.
    Hong KS; Santosa H
    Hear Res; 2016 Mar; 333():157-166. PubMed ID: 26828741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.