BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 29402832)

  • 1. The CFTR-Associated Ligand Arrests the Trafficking of the Mutant ΔF508 CFTR Channel in the ER Contributing to Cystic Fibrosis.
    Bergbower E; Boinot C; Sabirzhanova I; Guggino W; Cebotaru L
    Cell Physiol Biochem; 2018; 45(2):639-655. PubMed ID: 29402832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relative binding affinities of PDZ partners for CFTR: a biochemical basis for efficient endocytic recycling.
    Cushing PR; Fellows A; Villone D; Boisguérin P; Madden DR
    Biochemistry; 2008 Sep; 47(38):10084-98. PubMed ID: 18754678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ERp29 regulates DeltaF508 and wild-type cystic fibrosis transmembrane conductance regulator (CFTR) trafficking to the plasma membrane in cystic fibrosis (CF) and non-CF epithelial cells.
    Suaud L; Miller K; Alvey L; Yan W; Robay A; Kebler C; Kreindler JL; Guttentag S; Hubbard MJ; Rubenstein RC
    J Biol Chem; 2011 Jun; 286(24):21239-53. PubMed ID: 21525008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium 4-phenylbutyrate downregulates Hsc70: implications for intracellular trafficking of DeltaF508-CFTR.
    Rubenstein RC; Zeitlin PL
    Am J Physiol Cell Physiol; 2000 Feb; 278(2):C259-67. PubMed ID: 10666020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusional mobility of the cystic fibrosis transmembrane conductance regulator mutant, delta F508-CFTR, in the endoplasmic reticulum measured by photobleaching of GFP-CFTR chimeras.
    Haggie PM; Stanton BA; Verkman AS
    J Biol Chem; 2002 May; 277(19):16419-25. PubMed ID: 11877404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human heat shock protein 105/110 kDa (Hsp105/110) regulates biogenesis and quality control of misfolded cystic fibrosis transmembrane conductance regulator at multiple levels.
    Saxena A; Banasavadi-Siddegowda YK; Fan Y; Bhattacharya S; Roy G; Giovannucci DR; Frizzell RA; Wang X
    J Biol Chem; 2012 Jun; 287(23):19158-70. PubMed ID: 22505710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Knockdown of NHERF1 enhances degradation of temperature rescued DeltaF508 CFTR from the cell surface of human airway cells.
    Kwon SH; Pollard H; Guggino WB
    Cell Physiol Biochem; 2007; 20(6):763-72. PubMed ID: 17982258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis.
    Wang X; Venable J; LaPointe P; Hutt DM; Koulov AV; Coppinger J; Gurkan C; Kellner W; Matteson J; Plutner H; Riordan JR; Kelly JW; Yates JR; Balch WE
    Cell; 2006 Nov; 127(4):803-15. PubMed ID: 17110338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting CAL as a negative regulator of DeltaF508-CFTR cell-surface expression: an RNA interference and structure-based mutagenetic approach.
    Wolde M; Fellows A; Cheng J; Kivenson A; Coutermarsh B; Talebian L; Karlson K; Piserchio A; Mierke DF; Stanton BA; Guggino WB; Madden DR
    J Biol Chem; 2007 Mar; 282(11):8099-109. PubMed ID: 17158866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chaperone displacement from mutant cystic fibrosis transmembrane conductance regulator restores its function in human airway epithelia.
    Sun F; Mi Z; Condliffe SB; Bertrand CA; Gong X; Lu X; Zhang R; Latoche JD; Pilewski JM; Robbins PD; Frizzell RA
    FASEB J; 2008 Sep; 22(9):3255-63. PubMed ID: 18556464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combination of Correctors Rescue ΔF508-CFTR by Reducing Its Association with Hsp40 and Hsp27.
    Lopes-Pacheco M; Boinot C; Sabirzhanova I; Morales MM; Guggino WB; Cebotaru L
    J Biol Chem; 2015 Oct; 290(42):25636-45. PubMed ID: 26336106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ubiquitination and degradation of CFTR by the E3 ubiquitin ligase MARCH2 through its association with adaptor proteins CAL and STX6.
    Cheng J; Guggino W
    PLoS One; 2013; 8(6):e68001. PubMed ID: 23818989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of cystic fibrosis transmembrane conductance regulator membrane trafficking: not just from the endoplasmic reticulum to the Golgi.
    Farinha CM; Matos P; Amaral MD
    FEBS J; 2013 Sep; 280(18):4396-406. PubMed ID: 23773658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hsp 70/Hsp 90 organizing protein as a nitrosylation target in cystic fibrosis therapy.
    Marozkina NV; Yemen S; Borowitz M; Liu L; Plapp M; Sun F; Islam R; Erdmann-Gilmore P; Townsend RR; Lichti CF; Mantri S; Clapp PW; Randell SH; Gaston B; Zaman K
    Proc Natl Acad Sci U S A; 2010 Jun; 107(25):11393-8. PubMed ID: 20534503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Syntaxin 6 and CAL mediate the degradation of the cystic fibrosis transmembrane conductance regulator.
    Cheng J; Cebotaru V; Cebotaru L; Guggino WB
    Mol Biol Cell; 2010 Apr; 21(7):1178-87. PubMed ID: 20130090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partial restoration of cAMP-stimulated CFTR chloride channel activity in DeltaF508 cells by deoxyspergualin.
    Jiang C; Fang SL; Xiao YF; O'Connor SP; Nadler SG; Lee DW; Jefferson DM; Kaplan JM; Smith AE; Cheng SH
    Am J Physiol; 1998 Jul; 275(1):C171-8. PubMed ID: 9688848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Processing and function of CFTR-DeltaF508 are species-dependent.
    Ostedgaard LS; Rogers CS; Dong Q; Randak CO; Vermeer DW; Rokhlina T; Karp PH; Welsh MJ
    Proc Natl Acad Sci U S A; 2007 Sep; 104(39):15370-5. PubMed ID: 17873061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rescue of ΔF508-CFTR trafficking via a GRASP-dependent unconventional secretion pathway.
    Gee HY; Noh SH; Tang BL; Kim KH; Lee MG
    Cell; 2011 Sep; 146(5):746-60. PubMed ID: 21884936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. S-nitrosylating agents: a novel class of compounds that increase cystic fibrosis transmembrane conductance regulator expression and maturation in epithelial cells.
    Zaman K; Carraro S; Doherty J; Henderson EM; Lendermon E; Liu L; Verghese G; Zigler M; Ross M; Park E; Palmer LA; Doctor A; Stamler JS; Gaston B
    Mol Pharmacol; 2006 Oct; 70(4):1435-42. PubMed ID: 16857740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The human DnaJ homologue (Hdj)-1/heat-shock protein (Hsp) 40 co-chaperone is required for the in vivo stabilization of the cystic fibrosis transmembrane conductance regulator by Hsp70.
    Farinha CM; Nogueira P; Mendes F; Penque D; Amaral MD
    Biochem J; 2002 Sep; 366(Pt 3):797-806. PubMed ID: 12069690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.