These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 29402913)

  • 1. Combining Turing and 3D vertex models reproduces autonomous multicellular morphogenesis with undulation, tubulation, and branching.
    Okuda S; Miura T; Inoue Y; Adachi T; Eiraku M
    Sci Rep; 2018 Feb; 8(1):2386. PubMed ID: 29402913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Publisher Correction: Combining Turing and 3D vertex models reproduces autonomous multicellular morphogenesis with undulation, tubulation, and branching.
    Okuda S; Miura T; Inoue Y; Adachi T; Eiraku M
    Sci Rep; 2018 Jun; 8(1):8522. PubMed ID: 29867075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling cell apoptosis for simulating three-dimensional multicellular morphogenesis based on a reversible network reconnection framework.
    Okuda S; Inoue Y; Eiraku M; Adachi T; Sasai Y
    Biomech Model Mechanobiol; 2016 Aug; 15(4):805-16. PubMed ID: 26361766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling intercellular molecular signalling with multicellular deformation for simulating three-dimensional tissue morphogenesis.
    Okuda S; Inoue Y; Watanabe T; Adachi T
    Interface Focus; 2015 Apr; 5(2):20140095. PubMed ID: 25844156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional vertex model for simulating multicellular morphogenesis.
    Okuda S; Inoue Y; Adachi T
    Biophys Physicobiol; 2015; 12():13-20. PubMed ID: 27493850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vertex dynamics simulations of viscosity-dependent deformation during tissue morphogenesis.
    Okuda S; Inoue Y; Eiraku M; Adachi T; Sasai Y
    Biomech Model Mechanobiol; 2015 Apr; 14(2):413-25. PubMed ID: 25227116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible network reconnection model for simulating large deformation in dynamic tissue morphogenesis.
    Okuda S; Inoue Y; Eiraku M; Sasai Y; Adachi T
    Biomech Model Mechanobiol; 2013 Aug; 12(4):627-44. PubMed ID: 22941051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling cell proliferation for simulating three-dimensional tissue morphogenesis based on a reversible network reconnection framework.
    Okuda S; Inoue Y; Eiraku M; Sasai Y; Adachi T
    Biomech Model Mechanobiol; 2013 Oct; 12(5):987-96. PubMed ID: 23196700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topological graph description of multicellular dynamics based on vertex model.
    Hashimoto A; Nagao A; Okuda S
    J Theor Biol; 2018 Jan; 437():187-201. PubMed ID: 29080778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental Design of Synthetic Bacterial Architectures by Morphogenetic Engineering.
    Pascalie J; Potier M; Kowaliw T; Giavitto JL; Michel O; Spicher A; Doursat R
    ACS Synth Biol; 2016 Aug; 5(8):842-61. PubMed ID: 27244532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A three-dimensional vertex dynamics cell model of space-filling polyhedra simulating cell behavior in a cell aggregate.
    Honda H; Tanemura M; Nagai T
    J Theor Biol; 2004 Feb; 226(4):439-53. PubMed ID: 14759650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational models of airway branching morphogenesis.
    Varner VD; Nelson CM
    Semin Cell Dev Biol; 2017 Jul; 67():170-176. PubMed ID: 27269374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of side branching and tip splitting in a model of branching morphogenesis.
    Guo Y; Sun M; Garfinkel A; Zhao X
    PLoS One; 2014; 9(7):e102718. PubMed ID: 25050616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain-triggered mechanical feedback in self-organizing optic-cup morphogenesis.
    Okuda S; Takata N; Hasegawa Y; Kawada M; Inoue Y; Adachi T; Sasai Y; Eiraku M
    Sci Adv; 2018 Nov; 4(11):eaau1354. PubMed ID: 30474058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction-diffusion model as a framework for understanding biological pattern formation.
    Kondo S; Miura T
    Science; 2010 Sep; 329(5999):1616-20. PubMed ID: 20929839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical role of the spatial patterns of contractile cells in invagination of growing epithelial tissue.
    Inoue Y; Watanabe T; Okuda S; Adachi T
    Dev Growth Differ; 2017 Jun; 59(5):444-454. PubMed ID: 28707336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Models of lung branching morphogenesis.
    Miura T
    J Biochem; 2015 Mar; 157(3):121-7. PubMed ID: 25556243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directing three-dimensional multicellular morphogenesis by self-organization of vascular mesenchymal cells in hyaluronic acid hydrogels.
    Zhu X; Gojgini S; Chen TH; Fei P; Dong S; Ho CM; Segura T
    J Biol Eng; 2017; 11():12. PubMed ID: 28392831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid discrete-continuum approach to model Turing pattern formation.
    Macfarlane FR; Chaplain MAJ; Lorenzi T
    Math Biosci Eng; 2020 Oct; 17(6):7442-7479. PubMed ID: 33378905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CompuCell, a multi-model framework for simulation of morphogenesis.
    Izaguirre JA; Chaturvedi R; Huang C; Cickovski T; Coffland J; Thomas G; Forgacs G; Alber M; Hentschel G; Newman SA; Glazier JA
    Bioinformatics; 2004 May; 20(7):1129-37. PubMed ID: 14764549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.