These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 29402953)

  • 1. Development of chipless, wireless current sensor system based on giant magnetoimpedance magnetic sensor and surface acoustic wave transponder.
    Kondalkar VV; Li X; Park I; Yang SS; Lee K
    Sci Rep; 2018 Feb; 8(1):2401. PubMed ID: 29402953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Wireless and Passive SAW-Based Chemical Sensor for Organophosphorous Compound Detection.
    Xu FQ; Wang W; Xue XF; Hu HL; Liu XL; Pan Y
    Sensors (Basel); 2015 Dec; 15(12):30187-98. PubMed ID: 26633419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Characterization of Surface Acoustic Wave-Based Wireless and Passive Temperature Sensing System.
    Zhou Z; Wang H; Lou L
    Micromachines (Basel); 2024 Apr; 15(4):. PubMed ID: 38675355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single Interdigital Transducer Approach for Gravimetrical SAW Sensor Applications in Liquid Environments.
    Nguyen VH; Kaulen C; Simon U; Schnakenberg U
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29258213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Disturbing Effect of the Stray Magnetic Fields on Magnetoimpedance Sensors.
    Wang T; Zhou Y; Lei C; Zhi S; Guo L; Li H; Wu Z; Xie S; Luo J; Pu H
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27763498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wireless measurement of temperature using surface acoustic waves sensors.
    Reindl LM; Shrena IM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Nov; 51(11):1457-63. PubMed ID: 15600090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational Design of a Surface Acoustic Wave Device for Wearable Body Temperature Monitoring.
    Xie Y; Deng M; Chen J; Duan Y; Zhang J; Mu D; Dong S; Luo J; Jin H; Kakio S
    Micromachines (Basel); 2024 Apr; 15(5):. PubMed ID: 38793128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Combination of a Vibrational Electromagnetic Energy Harvester and a Giant Magnetoimpedance (GMI) Sensor.
    Beato-López JJ; Royo-Silvestre I; Algueta-Miguel JM; Gómez-Polo C
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32230989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scattering Matrix Approach to Design of One-Port Surface Acoustic Wave Resonator Sensors Utilizing Reflectors as Sensing Element.
    Kesuma HP; Ramakrishnan N; Lan BL; Dhillon AS; Achath Mohanan A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):1418-1429. PubMed ID: 33064646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Permalloy-Based Thin Film Structures: Magnetic Properties and the Giant Magnetoimpedance Effect in the Temperature Range Important for Biomedical Applications.
    Chlenova AA; Moiseev AA; Derevyanko MS; Semirov AV; Lepalovsky VN; Kurlyandskaya GV
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28817084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel wireless and temperature-compensated SAW vibration sensor.
    Wang W; Xue X; Huang Y; Liu X
    Sensors (Basel); 2014 Nov; 14(11):20702-12. PubMed ID: 25372617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuro-genetic system for optimization of GMI samples sensitivity.
    Pitta Botelho AC; Vellasco MM; Hall Barbosa CR; Costa Silva E
    Neural Netw; 2016 Mar; 75():141-9. PubMed ID: 26775132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Passive Downhole Pressure Sensor Based on Surface Acoustic Wave Technology.
    Quintero SMM; Figueiredo SWO; Takahashi VL; Llerena RAW; Braga AMB
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28714892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Integrated MEMS Magnetic Sensor Based on GMI Effect of Amorphous Wire.
    Chen J; Li J; Xu L
    Micromachines (Basel); 2019 Apr; 10(4):. PubMed ID: 30965586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multi-IDT input tunable surface acoustic wave filter.
    Zhu J; Emanetoglu NW; Lu Y; Kosinski JA; Pastore RA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Sep; 48(5):1383-8. PubMed ID: 11570763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximum measurement range and accuracy of SAW reflective delay line sensors.
    Zheng Z; Han T; Qin P
    Sensors (Basel); 2015 Oct; 15(10):26643-53. PubMed ID: 26492251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-Contact Current Sensing System Based on the Giant Magnetoimpedance Effect of CoFeNiSiB Amorphous Ribbon Meanders.
    Yang Z; Wang Z; Liu M; Sun X
    Micromachines (Basel); 2024 Jan; 15(1):. PubMed ID: 38276860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multitransducer SAW Device Architecture for Passive Wireless Sensor Tags.
    Sveshnikov BV; Shitvov AP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Nov; 65(11):2176-2183. PubMed ID: 30188819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Impedance-Loaded Orthogonal Frequency-Coded SAW Sensor for Passive Wireless Sensor Networks.
    Dai X; Fang L; Zhang C; Sun H
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32231025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An electronic-nose sensor node based on a polymer-coated surface acoustic wave array for wireless sensor network applications.
    Tang KT; Li CH; Chiu SW
    Sensors (Basel); 2011; 11(5):4609-21. PubMed ID: 22163865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.