These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29403088)

  • 61. Dual-wavelength fluorescent detection of particles on a novel microfluidic chip.
    Jiang H; Weng X; Li D
    Lab Chip; 2013 Mar; 13(5):843-50. PubMed ID: 23291857
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Surface tension-mediated, concave-microwell arrays for large-scale, simultaneous production of homogeneously sized embryoid bodies.
    Jeong GS; Song JH; Kang AR; Jun Y; Kim JH; Chang JY; Lee SH
    Adv Healthc Mater; 2013 Jan; 2(1):119-25. PubMed ID: 23184862
    [TBL] [Abstract][Full Text] [Related]  

  • 63. On Demand Release and Retrieval of Bacteria from Microwell Arrays Using Photodegradable Hydrogel Membranes.
    van der Vlies AJ; Barua N; Nieves-Otero PA; Platt TG; Hansen RR
    ACS Appl Bio Mater; 2019 Jan; 2(1):266-276. PubMed ID: 35016349
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Enhanced viscoelastic focusing of particle in microchannel.
    Fan LL; Zhao Z; Tao YY; Wu X; Yan Q; Zhe J; Zhao L
    Electrophoresis; 2020 Jun; 41(10-11):973-982. PubMed ID: 31900948
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A microfluidic alternating-pull-push active digitization method for sample-loss-free digital PCR.
    Zhou X; Ravichandran GC; Zhang P; Yang Y; Zeng Y
    Lab Chip; 2019 Dec; 19(24):4104-4116. PubMed ID: 31720646
    [TBL] [Abstract][Full Text] [Related]  

  • 66. High-throughput flow alignment of barcoded hydrogel microparticles.
    Chapin SC; Pregibon DC; Doyle PS
    Lab Chip; 2009 Nov; 9(21):3100-9. PubMed ID: 19823726
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Determination of the size distribution of blood microparticles directly in plasma using atomic force microscopy and microfluidics.
    Ashcroft BA; de Sonneville J; Yuana Y; Osanto S; Bertina R; Kuil ME; Oosterkamp TH
    Biomed Microdevices; 2012 Aug; 14(4):641-9. PubMed ID: 22391880
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A robust cell counting approach based on a normalized 2D cross-correlation scheme for in-line holographic images.
    Ra HK; Kim H; Yoon HJ; Son SH; Park T; Moon S
    Lab Chip; 2013 Sep; 13(17):3398-409. PubMed ID: 23839256
    [TBL] [Abstract][Full Text] [Related]  

  • 69. High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel.
    Kemna EW; Schoeman RM; Wolbers F; Vermes I; Weitz DA; van den Berg A
    Lab Chip; 2012 Aug; 12(16):2881-7. PubMed ID: 22688131
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Electrical cell counting process characterization in a microfluidic impedance cytometer.
    Hassan U; Bashir R
    Biomed Microdevices; 2014 Oct; 16(5):697-704. PubMed ID: 24898912
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Cancer Cell Analyses at the Single Cell-Level Using Electroactive Microwell Array Device.
    Kobayashi M; Kim SH; Nakamura H; Kaneda S; Fujii T
    PLoS One; 2015; 10(11):e0139980. PubMed ID: 26558904
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Spatial confinement of avidin domains in microwell arrays.
    Meek CC; Pantano P
    Lab Chip; 2001 Dec; 1(2):158-63. PubMed ID: 15100878
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Light-addressable measurements of cellular oxygen consumption rates in microwell arrays based on phase-based phosphorescence lifetime detection.
    Huang SH; Hsu YH; Wu CW; Wu CJ
    Biomicrofluidics; 2012; 6(4):44118. PubMed ID: 24348889
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Rapid Staining of Circulating Tumor Cells in Three-Dimensional Microwell Dialysis (3D-μDialysis) Chip.
    Cho W; Pradhan R; Chen HY; Weng YH; Chu HY; Tseng FG; Lin CP; Jiang JK
    Sci Rep; 2017 Sep; 7(1):11385. PubMed ID: 28900219
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Double-Sided Microwells with a Stepped Through-Hole Membrane for High-Throughput Microbial Assays.
    Bae J; Ju J; Kim D; Kim T
    Anal Chem; 2020 Jul; 92(14):9501-9510. PubMed ID: 32571023
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Rapid fabrication of sieved microwells and cross-flow microparticle trapping.
    Romita L; Thompson S; Hwang DK
    Sci Rep; 2020 Sep; 10(1):15687. PubMed ID: 32973304
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Microfluidic systems for high-throughput and high-content screening using the nematode Caenorhabditis elegans.
    Cornaglia M; Lehnert T; Gijs MAM
    Lab Chip; 2017 Nov; 17(22):3736-3759. PubMed ID: 28840220
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Precise and convenient size barcode on microfluidic chip for multiplex biomarker detection.
    Tang M; Chen J; Lei J; Ai Z; Liu F; Hong SL; Liu K
    Analyst; 2021 Sep; 146(19):5892-5897. PubMed ID: 34494037
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Opto-fluidics based microscopy and flow cytometry on a cell phone for blood analysis.
    Zhu H; Ozcan A
    Methods Mol Biol; 2015; 1256():171-90. PubMed ID: 25626539
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches.
    Dalili A; Samiei E; Hoorfar M
    Analyst; 2018 Dec; 144(1):87-113. PubMed ID: 30402633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.