BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 29403641)

  • 1. Nanoarmoring: strategies for preparation of multi-catalytic enzyme polymer conjugates and enhancement of high temperature biocatalysis.
    Zore OV; Pande P; Okifo O; Basu AK; Kasi RM; Kumar CV
    RSC Adv; 2017; 7(47):29563-29574. PubMed ID: 29403641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Armored Enzyme-Nanohybrids and Their Catalytic Function Under Challenging Conditions.
    Zore OV; Kasi RM; Kumar CV
    Methods Enzymol; 2017; 590():169-192. PubMed ID: 28411637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward "stable-on-the-table" enzymes: improving key properties of catalase by covalent conjugation with poly(acrylic acid).
    Riccardi CM; Cole KS; Benson KR; Ward JR; Bassett KM; Zhang Y; Zore OV; Stromer B; Kasi RM; Kumar CV
    Bioconjug Chem; 2014 Aug; 25(8):1501-10. PubMed ID: 25046001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein polymer conjugates: improving the stability of hemoglobin with poly(acrylic acid).
    Thilakarathne V; Briand VA; Zhou Y; Kasi RM; Kumar CV
    Langmuir; 2011 Jun; 27(12):7663-71. PubMed ID: 21591719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient biocatalysis in organic media with hemoglobin and poly(acrylic acid) nanogels.
    Zore OV; Lenehan PJ; Kumar CV; Kasi RM
    Langmuir; 2014 May; 30(18):5176-84. PubMed ID: 24785134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose oxidase and polyacrylic acid based water swellable enzyme-polymer conjugates for promoting glucose detection.
    Ji J; Joh HI; Chung Y; Kwon Y
    Nanoscale; 2017 Oct; 9(41):15998-16004. PubMed ID: 29022639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymerization-Induced Coassembly of Enzyme-Polymer Conjugates into Comicelles with Tunable and Enhanced Cascade Activity.
    Chiang CW; Liu X; Sun J; Guo J; Tao L; Gao W
    Nano Lett; 2020 Feb; 20(2):1383-1387. PubMed ID: 31891508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoarmoring of Enzymes by Interlocking in Cellulose Fibers With Poly(Acrylic Acid).
    Riccardi CM; Kasi RM; Kumar CV
    Methods Enzymol; 2017; 590():475-500. PubMed ID: 28411649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Horseradish peroxidase immobilized on the magnetic composite microspheres for high catalytic ability and operational stability.
    Xie X; Luo P; Han J; Chen T; Wang Y; Cai Y; Liu Q
    Enzyme Microb Technol; 2019 Mar; 122():26-35. PubMed ID: 30638506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable Enzymatic Nanoparticles from Nucleases, Proteases, Lipase and Antioxidant Proteins with Substrate-Binding and Catalytic Properties.
    Morozova OV; Barinov NA; Klinov DV
    Int J Mol Sci; 2023 Feb; 24(3):. PubMed ID: 36769367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of copper ion incorporated horseradish peroxidase-based hybrid nanoflowers for enhanced catalytic activity and stability.
    Somturk B; Hancer M; Ocsoy I; Özdemir N
    Dalton Trans; 2015 Aug; 44(31):13845-52. PubMed ID: 25940219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Stable-on-the-Table" Biosensors: Hemoglobin-Poly (Acrylic Acid) Nanogel BioElectrodes with High Thermal Stability and Enhanced Electroactivity.
    Ghimire A; Zore OV; Thilakarathne VK; Briand VA; Lenehan PJ; Lei Y; Kasi RM; Kumar CV
    Sensors (Basel); 2015 Sep; 15(9):23868-85. PubMed ID: 26393601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochrome c-poly(acrylic acid) conjugates with improved peroxidase turnover number.
    Benson KR; Gorecki J; Nikiforov A; Tsui W; Kasi RM; Kumar CV
    Org Biomol Chem; 2019 Apr; 17(16):4043-4048. PubMed ID: 30950479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of Novel Polymer-Assisted Organic-Inorganic Hybrid Nanoflowers and Their Application in Cascade Biocatalysis.
    Braz JF; Dencheva NV; Malfois M; Denchev ZZ
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of Molecular Conformation and Activity-Related Properties of Lipase Immobilized onto Core-Shell Structured Polyacrylic Acid-Coated Magnetic Silica Nanocomposite Particles.
    Esmaeilnejad-Ahranjani P; Kazemeini M; Singh G; Arpanaei A
    Langmuir; 2016 Apr; 32(13):3242-52. PubMed ID: 26986897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme immobilization on protein-resistant PNIPAAm brushes: impact of biotin linker length on enzyme amount and catalytic activity.
    Rosenthal A; Rauch S; Eichhorn KJ; Stamm M; Uhlmann P
    Colloids Surf B Biointerfaces; 2018 Nov; 171():351-357. PubMed ID: 30056296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new generation of flowerlike horseradish peroxides as a nanobiocatalyst for superior enzymatic activity.
    Ocsoy I; Dogru E; Usta S
    Enzyme Microb Technol; 2015; 75-76():25-9. PubMed ID: 26047912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agarose-chitosan hydrogel-immobilized horseradish peroxidase with sustainable bio-catalytic and dye degradation properties.
    Bilal M; Rasheed T; Zhao Y; Iqbal HMN
    Int J Biol Macromol; 2019 Mar; 124():742-749. PubMed ID: 30496859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling the aggregation of conjugates of streptavidin with smart block copolymers prepared via the RAFT copolymerization technique.
    Kulkarni S; Schilli C; Grin B; Müller AH; Hoffman AS; Stayton PS
    Biomacromolecules; 2006 Oct; 7(10):2736-41. PubMed ID: 17025347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and Applications of Dendronized Polymer-Enzyme Conjugates.
    Küchler A; Messmer D; Schlüter AD; Walde P
    Methods Enzymol; 2017; 590():445-474. PubMed ID: 28411648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.