These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 29404793)

  • 1. Design of an Orthopedic Product by Using Additive Manufacturing Technology: The Arm Splint.
    Blaya F; Pedro PS; Silva JL; D'Amato R; Heras ES; Juanes JA
    J Med Syst; 2018 Feb; 42(3):54. PubMed ID: 29404793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis and comparison of wrist splint designs using the finite element method: Multi-material three-dimensional printing compared to typical existing practice with thermoplastics.
    Cazon A; Kelly S; Paterson AM; Bibb RJ; Campbell RI
    Proc Inst Mech Eng H; 2017 Sep; 231(9):881-897. PubMed ID: 28689470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a Functional Splint for Rehabilitation of Achilles Tendon Injury Using Advanced Manufacturing (AM) Techniques. Implementation Study.
    Blaya F; Pedro PS; Pedro ABS; Lopez-Silva J; Juanes JA; D'Amato R
    J Med Syst; 2019 Mar; 43(5):122. PubMed ID: 30915598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-Site 3D Printing of Functional Custom Mallet Splints for Mars Analogue Crewmembers.
    Wong JY
    Aerosp Med Hum Perform; 2015 Oct; 86(10):911-4. PubMed ID: 26564680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a Smart Splint to Monitor Different Parameters during the Treatment Process.
    De Agustín Del Burgo JM; Blaya Haro F; D'Amato R; Juanes Méndez JA
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-Printed Hand Splints versus Thermoplastic Splints: A Randomized Controlled Pilot Feasibility Trial.
    Waldburger L; Schaller R; Furthmüller C; Schrepfer L; Schaefer DJ; Kaempfen A
    Int J Bioprint; 2022; 8(1):474. PubMed ID: 35187278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manufacturing splints for orthognathic surgery using a three-dimensional printer.
    Metzger MC; Hohlweg-Majert B; Schwarz U; Teschner M; Hammer B; Schmelzeisen R
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2008 Feb; 105(2):e1-7. PubMed ID: 18230371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A digital process for additive manufacturing of occlusal splints: a clinical pilot study.
    Salmi M; Paloheimo KS; Tuomi J; Ingman T; Mäkitie A
    J R Soc Interface; 2013 Jul; 10(84):20130203. PubMed ID: 23614943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional printed final occlusal splint for orthognathic surgery: design and validation.
    Shaheen E; Sun Y; Jacobs R; Politis C
    Int J Oral Maxillofac Surg; 2017 Jan; 46(1):67-71. PubMed ID: 27815012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in Orthotic and Prosthetic Manufacturing: A Technology Review.
    Barrios-Muriel J; Romero-Sánchez F; Alonso-Sánchez FJ; Rodríguez Salgado D
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A custom-made nasal splint designed with 3D modelisation].
    Khonsari RH; Ivanov AL
    Rev Stomatol Chir Maxillofac; 2011 Feb; 112(1):62-3. PubMed ID: 21272903
    [No Abstract]   [Full Text] [Related]  

  • 12. Optimization design of thumbspica splint using finite element method.
    Huang TH; Feng CK; Gung YW; Tsai MW; Chen CS; Liu CL
    Med Biol Eng Comput; 2006 Dec; 44(12):1105-11. PubMed ID: 17106755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid customization system for 3D-printed splint using programmable modeling technique - a practical approach.
    Li J; Tanaka H
    3D Print Med; 2018; 4(1):5. PubMed ID: 29882529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D planning in orthognathic surgery: CAD/CAM surgical splints and prediction of the soft and hard tissues results - our experience in 16 cases.
    Aboul-Hosn Centenero S; Hernández-Alfaro F
    J Craniomaxillofac Surg; 2012 Feb; 40(2):162-8. PubMed ID: 21458285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Semi-Automatic Method to Create an Affordable Three-Dimensional Printed Splint Using Open-Source and Free Software.
    Wang Z; Dubrowski A
    Cureus; 2021 Mar; 13(3):e13934. PubMed ID: 33880276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytotoxicity of 3D-printed, milled, and conventional oral splint resins to L929 cells and human gingival fibroblasts.
    Bürgers R; Schubert A; Müller J; Krohn S; Rödiger M; Leha A; Wassmann T
    Clin Exp Dent Res; 2022 Jun; 8(3):650-657. PubMed ID: 35570327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lightweight Splint Design for Individualized Treatment of Distal Radius Fracture.
    Yan W; Ding M; Kong B; Xi X; Zhou M
    J Med Syst; 2019 Jul; 43(8):284. PubMed ID: 31302792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytotoxicity of printed resin-based splint materials.
    Wulff J; Schweikl H; Rosentritt M
    J Dent; 2022 May; 120():104097. PubMed ID: 35331812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic fatigue of 3D-printed splint materials.
    Wulff J; Schmid A; Huber C; Rosentritt M
    J Mech Behav Biomed Mater; 2021 Dec; 124():104885. PubMed ID: 34628189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polishability and wear resistance of splint material for oral appliances produced with conventional, subtractive, and additive manufacturing.
    Huettig F; Kustermann A; Kuscu E; Geis-Gerstorfer J; Spintzyk S
    J Mech Behav Biomed Mater; 2017 Nov; 75():175-179. PubMed ID: 28734259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.