These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 29405124)

  • 1. Performance of a new accelerating-electrode-equipped fast-time-response PMT coupled with fast LGSO.
    Lee S; Lee MS; Won JY; Lee JS
    Phys Med Biol; 2018 Mar; 63(5):05NT03. PubMed ID: 29405124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The timing resolution of scintillation-detector systems: Monte Carlo analysis.
    Choong WS
    Phys Med Biol; 2009 Nov; 54(21):6495-513. PubMed ID: 19820267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance characterization of high quantum efficiency metal package photomultiplier tubes for time-of-flight and high-resolution PET applications.
    Ko GB; Lee JS
    Med Phys; 2015 Jan; 42(1):510-20. PubMed ID: 25563289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a clinical TOF-PET detector design that achieves ⩽100 ps coincidence time resolution.
    Cates JW; Levin CS
    Phys Med Biol; 2018 Jun; 63(11):115011. PubMed ID: 29762136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of stacked-crystal PET detector designs for measurement of both TOF and DOI.
    Schmall JP; Surti S; Karp JS
    Phys Med Biol; 2015 May; 60(9):3549-65. PubMed ID: 25860172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in coincidence time resolution for PET.
    Cates JW; Levin CS
    Phys Med Biol; 2016 Mar; 61(6):2255-64. PubMed ID: 26914187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of a Multi-Anode Microchannel Plate PMT for Time-of-Flight PET.
    Choong WS
    IEEE Trans Nucl Sci; 2010 Sep; 57(5):2417-2423. PubMed ID: 21152368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of depth encoding small animal PET detectors using dual-ended readout of pixelated scintillator arrays with SiPMs.
    Kuang Z; Sang Z; Wang X; Fu X; Ren N; Zhang X; Zheng Y; Yang Q; Hu Z; Du J; Liang D; Liu X; Zheng H; Yang Y
    Med Phys; 2018 Feb; 45(2):613-621. PubMed ID: 29222959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a general study of prompt photons to achieve 10 ps in TOF-PET.
    Gundacker S; Auffray E; Pauwels K; Lecoq P
    Phys Med Biol; 2016 Apr; 61(7):2802-37. PubMed ID: 26982798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single transmission-line readout method for silicon photomultiplier based time-of-flight and depth-of-interaction PET.
    Ko GB; Lee JS
    Phys Med Biol; 2017 Mar; 62(6):2194-2207. PubMed ID: 28099158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance comparison of high quantum efficiency and normal quantum efficiency photomultiplier tubes and position sensitive photomultiplier tubes for high resolution PET and SPECT detectors.
    Yamamoto S; Watabe H; Kato K; Hatazawa J
    Med Phys; 2012 Nov; 39(11):6900-7. PubMed ID: 23127083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance evaluation of a depth-of-interaction detector by use of position-sensitive PMT with a super-bialkali photocathode.
    Hirano Y; Nitta M; Inadama N; Nishikido F; Yoshida E; Murayama H; Yamaya T
    Radiol Phys Technol; 2014 Jan; 7(1):57-66. PubMed ID: 23963892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coincidence time resolution of 30 ps FWHM using a pair of Cherenkov-radiator-integrated MCP-PMTs.
    Ota R; Nakajima K; Ogawa I; Tamagawa Y; Shimoi H; Suyama M; Hasegawa T
    Phys Med Biol; 2019 Mar; 64(7):07LT01. PubMed ID: 30870825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depth-of-interaction measurement in a single-layer crystal array with a single-ended readout using digital silicon photomultiplier.
    Lee MS; Lee JS
    Phys Med Biol; 2015 Aug; 60(16):6495-514. PubMed ID: 26247294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel compensation method for the anode gain non-uniformity of multi-anode photomultiplier tubes.
    Lee CM; Il Kwon S; Ko GB; Ito M; Yoon HS; Lee DS; Hong SJ; Lee JS
    Phys Med Biol; 2012 Jan; 57(1):191-207. PubMed ID: 22156011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the Timing Properties of a High Quantum Efficiency Photomultiplier Tube.
    Peng Q; Choong WS; Moses WW
    IEEE Trans Nucl Sci; 2013 Oct; 60(5):3212-3219. PubMed ID: 24526798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and simulation of a novel method for determining depth-of-interaction in a PET scintillation crystal array using a single-ended readout by a multi-anode PMT.
    Ito M; Lee JS; Park MJ; Sim KS; Hong SJ
    Phys Med Biol; 2010 Jul; 55(13):3827-41. PubMed ID: 20551503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analog filtering methods improve leading edge timing performance of multiplexed SiPMs.
    Bieniosek MF; Cates JW; Grant AM; Levin CS
    Phys Med Biol; 2016 Aug; 61(16):N427-40. PubMed ID: 27484131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sub-100 ps coincidence time resolution for positron emission tomography with LSO:Ce codoped with Ca.
    Nemallapudi MV; Gundacker S; Lecoq P; Auffray E; Ferri A; Gola A; Piemonte C
    Phys Med Biol; 2015 Jun; 60(12):4635-49. PubMed ID: 26020610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-based signal sampling using sawtooth-shaped threshold.
    Ko GB; Lee JS
    Phys Med Biol; 2019 Jun; 64(12):125020. PubMed ID: 31051493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.