These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 29405214)
1. Liquid crystals of hard rectangles on flat and cylindrical manifolds. Sitta CE; Smallenburg F; Wittkowski R; Löwen H Phys Chem Chem Phys; 2018 Feb; 20(7):5285-5294. PubMed ID: 29405214 [TBL] [Abstract][Full Text] [Related]
2. Demixing and orientational ordering in mixtures of rectangular particles. de las Heras D; Martínez-Ratón Y; Velasco E Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031704. PubMed ID: 17930260 [TBL] [Abstract][Full Text] [Related]
3. Orientational ordering in hard rectangles: The role of three-body correlations. Martínez-Ratón Y; Velasco E; Mederos L J Chem Phys; 2006 Jul; 125(1):014501. PubMed ID: 16863310 [TBL] [Abstract][Full Text] [Related]
4. Nematic and almost-tetratic phases of colloidal rectangles. Zhao K; Harrison C; Huse D; Russel WB; Chaikin PM Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):040401. PubMed ID: 17994923 [TBL] [Abstract][Full Text] [Related]
5. Monte Carlo simulation of two-dimensional hard rectangles: confinement effects. Triplett DA; Fichthorn KA Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011707. PubMed ID: 18351866 [TBL] [Abstract][Full Text] [Related]
6. Assessment by Monte Carlo computer simulations of the phase behavior of hard spherocylinders confined within cylindrical cavities. Viveros-Méndez PX; Gil-Villegas A; Aranda Espinoza S J Chem Phys; 2017 Dec; 147(23):234902. PubMed ID: 29272952 [TBL] [Abstract][Full Text] [Related]
7. Demixing and tetratic ordering in some binary mixtures of hard superellipses. Mizani S; Gurin P; Aliabadi R; Salehi H; Varga S J Chem Phys; 2020 Jul; 153(3):034501. PubMed ID: 32716200 [TBL] [Abstract][Full Text] [Related]
8. Phase behavior of colloidal hard tetragonal parallelepipeds (cuboids): a Monte Carlo simulation study. John BS; Escobedo FA J Phys Chem B; 2005 Dec; 109(48):23008-15. PubMed ID: 16853998 [TBL] [Abstract][Full Text] [Related]
9. Phase behavior of parallel hard cylinders. Capitán JA; Martínez-Ratón Y; Cuesta JA J Chem Phys; 2008 May; 128(19):194901. PubMed ID: 18500895 [TBL] [Abstract][Full Text] [Related]
10. Phase diagram of two-dimensional hard rods from fundamental mixed measure density functional theory. Wittmann R; Sitta CE; Smallenburg F; Löwen H J Chem Phys; 2017 Oct; 147(13):134908. PubMed ID: 28987092 [TBL] [Abstract][Full Text] [Related]
11. Liquid-crystal patterns of rectangular particles in a square nanocavity. González-Pinto M; Martínez-Ratón Y; Velasco E Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032506. PubMed ID: 24125284 [TBL] [Abstract][Full Text] [Related]
12. Mesophase formation in a system of top-shaped hard molecules: density functional theory and Monte Carlo simulation. de las Heras D; Varga S; Vesely FJ J Chem Phys; 2011 Jun; 134(21):214902. PubMed ID: 21663376 [TBL] [Abstract][Full Text] [Related]
14. Dimensional crossover of hard parallel cylinders confined on cylindrical surfaces. Martínez-Ratón Y; Velasco E Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052314. PubMed ID: 23767547 [TBL] [Abstract][Full Text] [Related]
15. Fundamental measure theory for smectic phases: scaling behavior and higher order terms. Wittmann R; Marechal M; Mecke K J Chem Phys; 2014 Aug; 141(6):064103. PubMed ID: 25134547 [TBL] [Abstract][Full Text] [Related]
16. Enhanced stability of the tetratic phase due to clustering. Martínez-Ratón Y; Velasco E Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011711. PubMed ID: 19257056 [TBL] [Abstract][Full Text] [Related]
17. Phase behaviour of hard board-like particles. Cuetos A; Dennison M; Masters A; Patti A Soft Matter; 2017 Jul; 13(27):4720-4732. PubMed ID: 28617489 [TBL] [Abstract][Full Text] [Related]
18. Nonuniform liquid-crystalline phases of parallel hard rod-shaped particles: From ellipsoids to cylinders. Martínez-Ratón Y; Velasco E J Chem Phys; 2008 Aug; 129(5):054907. PubMed ID: 18698925 [TBL] [Abstract][Full Text] [Related]
19. Topological fine structure of smectic grain boundaries and tetratic disclination lines within three-dimensional smectic liquid crystals. Monderkamp PA; Wittmann R; Te Vrugt M; Voigt A; Wittkowski R; Löwen H Phys Chem Chem Phys; 2022 Jul; 24(26):15691-15704. PubMed ID: 35552573 [TBL] [Abstract][Full Text] [Related]
20. Smectic ordering in athermal systems of rodlike triblock copolymers. Varga S; Fraden S J Chem Phys; 2007 Oct; 127(15):154902. PubMed ID: 17949209 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]